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Abstract

Data from the numerous mobile devices, location-based applications, and collection

sensors used currently can provide important insights about human and natural pro-

cesses. These insights can inform decision making in designing and optimising in-

frastructure such as transportation or energy. However, extracting patterns related to

spatial properties is challenging due to the large quantity of the data produced and the

complexity of the processes it describes. We propose scalable, multi-resolution ap-

proximation and heuristic algorithms that make use of spatial proximity properties to

solve fundamental data mining and optimisation problems with a better running time

and accuracy. We observe that abstracting from individual data points and working

with units of neighbouring points based on various measures on similarity, improve

computational efficiency and diminish the effects of noise and overfitting. We con-

sider applications in: mobility data compression, transit network planning, and solar

power output prediction.

Firstly, in order to understand transportation needs, it is essential to have efficient ways

to represent large amounts of travel data. In analysing spatial trajectories (for example

taxis travelling in a city), one of the main challenges is computing distances between

trajectories efficiently; due to their size and complexity this task is computationally

expensive. We build data structures and algorithms to sketch trajectory data that make

queries such as distance computation, nearest neighbour search and clustering, which

are key to finding mobility patterns, more computationally efficient. We use locality

sensitive hashing, a technique that associates similar objects to the same hash.

Secondly, to build efficient infrastructure it is necessary to satisfy travel demand by

placing resources optimally. This is difficult due to external constraints (such as limits

on budget) and the complexity of existing road networks that allow for a large number

of candidate locations. For this purpose, we present heuristic algorithms for efficient

transit network design with a case study on cycling lane placement. The heuristic is

based on a new type of clustering by projection, that is both computationally efficient

and gives good results in practice.

Lastly, we devise a novel method to forecast solar power output based on numerical

weather predictions, clear sky predictions and persistence data. The ensemble of a

multivariate linear regression model, support vector machines model, and an artifi-

cial neural network gives more accurate predictions than any of the individual models.
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Analysing the performance of the models in a suite of frameworks reveals that building

separate models for each self-contained area based on weather patterns gives a better

accuracy than a single model that predicts the total. The ensemble can be further im-

proved by giving performance-based weights to the individual models. This suggests

that the models identify different patterns in the data, which motivated the choice of an

ensemble architecture.
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Lay Summary
Data with a spatial component is ubiquitous today: the location history stored on a mo-

bile device, the number of cars passing by traffic counters, the observations recorded

by weather sensors are all examples of data with associated location information.

Analysing this type of data can help extract spatial patterns that inform decision mak-

ing in many areas, such as infrastructure optimisation.

One fundamental task in analysing location data is computing distances between ob-

jects. These objects can be, for example, sequences of GPS locations, called trajecto-

ries, denoting the latitude and longitude of the places that someone travelled through

in a given day. Given a set of such sequences, one problem of interest is to find similar

trajectories, that follow the same path through a road network; in an urban context this

could have applications such as discovering groups of commuters who move from one

part of the city to another in the same time frame. To extract similar trajectories im-

plies computing pairwise distances; however, exact computation is expensive, due to

the number, size, and complexity of the trajectories. We devise new methods to repre-

sent trajectories that make distance computation and other similar tasks more efficient

in terms of time and space used for computation.

Another application of analysing trajectory data is placing transportation resources ef-

ficiently. For example, data on cycling trips made in a city can inform how to place

cycling lanes efficiently such that a large number of cyclists can use them, while re-

specting a limited construction budget. At the level of a city it is challenging to identify

an optimal set of lanes because of the large number of trips to be analysed and the large

number of candidate streets. We propose a transit network design solution for placing

resources under given constraints that can handle large datasets and gives good results

in practice.

We are looking at the task of predicting solar power based on numerical weather fore-

casts. It is known that the spatial distribution of power plants has an influence on the

fluctuations in the total aggregated output. We show that having separate, local, mod-

els based on areas with similar weather conditions gives a better accuracy than a full

model for the total output.
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Chapter 1

Introduction

1.1 Motivation

Learning from data is the process of discovering and extracting patterns. Localised

data is pervasive today, both at a granular and aggregated level. Over 5 billion peo-

ple carry mobile phones1, which are location sensing devices. They store data that

can give insights about individual human mobility patterns and preferences, such as

the mix of routine and exploration activities. Aggregated location data comes from a

myriad of infrastructure systems, such as metro card readers, cycling counters, traf-

fic sensing devices, cell towers, etc. Making sense of this abundance of location data

has a wide reaching and direct impact - it can inform decision making in areas such

as transportation, communication networks, crisis prevention and intervention, smart

cities design, and others. Extracting patterns from localised data is often possible due

to a certain amount of structure in human and natural processes, but not trivial, due to

the inherent stochasticity and complexity that makes the patterns difficult to describe

mathematically exactly.

We propose multi-resolution, scalable, approximation and heuristic algorithms for

learning from large sets of geospatial data. The applications we consider are a range of

machine learning tasks, such as nearest neighbour search, clustering, network design

and timeseries prediction. The algorithms we present work in a bottom-up fashion, by

first processing data locally. We propose different methods of abstracting from individ-

ual data points to form self-contained units based on their spatial proximity; working

1Source: https://datareportal.com/global-digital-overview

1
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2 Chapter 1. Introduction

with these units reduces the computational running time and increases the accuracy

of existing algorithms. The techniques we use are locality-sensitive hashing, geospa-

tial clustering and spatial correlation and hierarchical forecasting. We first describe

and motivate the choice of applications and corresponding data and in the following

section we summarise the proposed algorithms for each application.

Considering the location of the process they describe, the types of data we work with

are: dynamic and static. Dynamic data describes the locations of moving objects, while

static data describes changing processes at fixed locations. The kind of dynamic data

we analyse reflects human mobility, how people move in an urban area. The static

data consists of observations of weather factors and energy power output. We motivate

these particular choices from a sustainability perspective.

One of the pressing issues of the moment is climate change, caused by the buildup

of greenhouse gas emissions. The two sectors that are responsible for the largest pro-

portions of human-caused greenhouse gas emissions are transportation and electricity,

each of them accounting for a half and a quarter of emissions, respectively. Both sec-

tors are awash in quantifiable and relatively easy to source data, which makes them

particularly suitable for leveraging machine learning techniques with the purpose of

optimising services and diminishing negative effects on the environment.

Transportation can be decarbonised by optimising loading and routing. In an urban

setting, more efficient transportation services can be achieved by analysing people’s

travel patterns. We consider human mobility data at the individual level - every tra-

jectory comes from one person taking a self-contained trip. By trajectory we mean a

series of latitude and longitude locations, which describe either the full path and its

geometry, or just the origin and destination. This choice depends on the type of ap-

plication the data is intended for. In some scenarios we are interested in the full path,

which in the urban context would be representative for the streets and buildings a per-

son is passing to reach their destination. In this case, most machine learning tasks for

finding patterns, such as nearest neighbours or clustering, require a notion of distance.

Computing distances between human mobility trajectories is a fundamental task that

is made challenging by the size and complexity of the trajectories. To this end, we

propose a compression technique for trajectories that makes distance computation and

typical queries, such as nearest neighbours and clustering, scalable to the amount of

data typically required in applications. In other cases, it is useful to abstract from the

geometry of the path, and consider the trip from a utilitarian perspective - a person
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needed to get from one part of the city to another because they are going from home

to work. The exact path they choose to take is not important, because it might change

based on the resources that become available to them. Aggregating origin-destination

trips can serve precisely this: to place resources efficiently so that a large number of

people can fulfil their travel purposes. Here we are referring to transportation resources

such as cycle lanes, bus routes, or metro lines. The optimal deployment of these re-

sources can be described as designing a transit network for urban areas. This is a

challenging problem due to multiple contradicting constraints, such as population cov-

erage versus budget limitations. While analytical solutions are hardly scalable to the

size of a city road network, heuristic machine learning algorithms are often found to

give plausible solutions. Transportation is, therefore, one of the sectors where machine

learning for location data can greatly optimise resource placement.

In terms of reducing emissions in the electricity sector, one area of focused interest

is the transition to low carbon energy sources, of which solar, wind and hydropower

are a substantial part. This transition is difficult because of the variable nature of

renewable resources. Accurate power output forecasting algorithms are essential to

making them a reliable, safe, and attractive alternative to high-carbon sources. In this

thesis we focus on forecasting the electric power generated by solar photovoltaic sys-

tems. This depends on the level of incoming solar radiation, which in turn depends

on atmospheric factors. Numerical weather forecasts have been successfully used as

predictive variables and recent advances in climate modelling and weather forecast-

ing can greatly improve solar power output prediction algorithms. However, some of

the influencing weather factors, such as cloud cover, are difficult to predict accurately

due to the turbulent nature of atmospheric processes. Difficult to predict weather phe-

nomena can create fluctuations in the power output; however, it has been shown that

aggregated output suffers less from large fluctuations, making it easier to predict, but

the effect depends on spatial factors. We show how these factors influence a suite of

machine learning models in order to guide the choice of framework for maximising

performance.

Consequently, the contributions presented in this thesis focus on: compressing trajec-

tories for efficient distance computation and extraction of travel patterns, designing a

transit network by aggregating trips for optimised transportation, and improving the

accuracy of output power prediction algorithms for low carbon sources of energy by

considering spatial factors. We give more details about each in the next section.
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1.2 Contributions overview

For geospatial data, locality is an intuitive property. We show that by grouping enti-

ties or subentities in independent, disjoint units based on their spatial proximity and

using them as input alleviates the effects of noise, overfitting, and high dimensional-

ity, leading to improvements in computational running time and accuracy. Depending

on the application, we use locality-sensitive hashing, spatial clustering, and the spatial

smoothing property and hierarchical forecasting.

Firstly, to understand transportation needs, efficient algorithms are needed for manip-

ulating mobility data. Searching for similar GPS trajectories is a fundamental problem

that faces challenges of large data volume and intrinsic complexity of trajectory com-

parison. We present a suite of sketches for trajectory data that drastically reduce the

computation costs associated with near neighbour search, distance estimation, clus-

tering and classification, and subtrajectory detection. Apart from summarising the

dataset, our sketches have two uses. First, we obtain simple provable locality-sensitive

hash families for both the Hausdorff and Fréchet distance measures, useful in near

neighbour queries. Second, we build a data structure called MRTS (Multi Resolution

Trajectory Sketch), which contains sketches of varying degrees of detail. The MRTS

is a user-friendly, compact representation of the dataset that allows us to efficiently an-

swer various other types of queries. Moreover, MRTS can be used in a dynamic setting

with fast insertions of trajectories into the database. Experiments on real data show ef-

fective locality-sensitive hashing substantially improves near neighbour search time.

Distances defined on the sketches show good correlation with Fréchet and Hausdorff

distances.

Secondly, to encourage usage of low carbon transportation options (such as public

transport, bicycles, ride-sharing) it is necessary to meet the travel demand optimally.

For this purpose we present approximate algorithms to efficiently aggregate trips made

in an urban setting with the purpose of understanding where transportation resources

should be placed. We first formulate the problem as a bike lane problem - positioning

lanes to maximise utility and meet given constraints (such as budget constraints); we

show that this problem is NP-hard. We propose a fast heuristic algorithm that, given

a road network, a set of locations of the origins and destinations of trips, and a set of

constraints, identifies a subnetwork such that the number of trips that can use it is max-

imised. The algorithm is based on a novel multi-resolution clustering by projections
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technique. Experiments comparing the number of trips satisfied by a network gener-

ated with the proposed algorithm and the existent cycling network in London shows

the efficiency of the technique.

Lastly, we present a novel method to forecast solar power output based on day ahead

numerical weather predictions and show how spatial factors influence the accuracy of

the predictions. The ensemble framework we propose is composed of a multivariable

linear regression model, a support vector machines model and a gated recurrent unit

neural network. Experiments on 2 years of solar power output data shows that the

ensemble performs better than the individual models. We show that building separate

models for areas with similar weather conditions has a better overall performance than

a single model predicting the total output. Weighting the models differently for each

area based on their training and validation performance improves the accuracy on the

test set.

Machine learning tools are fundamental to understanding travel patterns, improving

shared mobility, and modelling how weather factors influence low-carbon power out-

put, all of which are essential towards sustainability. Local preprocessing and mod-

elling improve the computation running time and accuracy of these tools. In the next

section we describe how our contributions are presented in this thesis.

1.3 Structure of the thesis

In the next chapter we set the background and present work related to the methods

and techniques that our proposed algorithms are based on: locality-sensitive hashing,

geospatial clustering and spatial smoothing and hierarchical forecasting. We give de-

tails of how this methods are applied in relation to the applications motivated in the

above section.

Chapter 3 presents compression algorithms for creating trajectory sketches. The sketches

are useful for speeding up distance computation, which is at the base of many location

data queries. The literature review focuses on distance metrics and methods for com-

pression. The problem description introduces locality-sensitive hashing (LSH), which

is the method we are using to build the sketches. We propose two distance metrics

based on random disks deployment and show how they relate to two popular distance

measures, Hausdorff and Fréchet . More specifically, we described the LSH families
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corresponding to each metric. We then present the construction of Multi Resolution

Trajectory Sketches (MRTS) and show how they can speed up computation of typical

location data queries, such as clustering. The section on experiments shows the corre-

lation between Hausdorff, Fréchet and our proposed metrics, the speed up in nearest

neighbours queries, robustness to data loss, time efficiency in distance computation

and a comparison with an existing LSH method for trajectories.

Chapter 4 proposes heuristic algorithms for designing a transit network under certain

constraints. The background section describes works related to network design and ag-

gregating origin-destination trajectories for transit resources placement. We formulate

the task in terms of placing bike lanes, as described in the problem description section.

In the following section we present the construction algorithm that involves a multi-

resolution clustering stage and a global merging stage; the steps are illustrated using a

concrete example. The experiments section describes the datasets we use: the London

road network, the Santander Cycles hire trips and the current bicycle lanes system in

London, and the results of the comparison with our generated network.

Chapter 5 introduces a new ensemble framework for predicting solar power output

from numerical weather predictions and analyses the impact of spatial factors on the

accuracy of the predictions. The literature review gives a summary of current solar

power prediction models and presents work on spatial correlation in relation to solar

power prediction. We present in detail the datasets used for prediction, showing sta-

tistical properties and the lack of obvious patterns in the power output. We give an

overview of the models used in the ensemble and explain the choice of features. In

the experiments section we present the experimental frameworks and the error metrics.

We show how the spatial factors influence the models and how this can be used for

further accuracy improvements.

Lastly, we summarise our work in the Conclusions chapter and describe directions for

future work.



Chapter 2

Background

We propose scalable approximation and heuristic algorithms that make use of spatial

proximity properties of the data to improve computation efficiency and accuracy in

the context of large datasets. We show how abstracting from individual data points to

regions of neighbouring points can achieve performance improvements, by reducing

the computational running time and the effect of noisy measurements and avoiding

overfitting.

The techniques we use are locality-sensitive hashing, geospatial clustering and spatial

correlation and hierarchical forecasting. locality-sensitive hashing is a hashing tech-

nique that generates similar hashes for objects similar, meaning that they are close ac-

cording to some distance measure; this improves the efficiency of searching for similar

objects and other similarity based tasks such as clustering. We show how this technique

can be used in the context of spatial data and propose algorithms and data structures

that are designed for GPS trajectories. We use geospatial clustering as an initial and

intermediary step for a network design problem that we show to be NP-hard; work-

ing with spatially close groups instead of individual trajectories gives a heuristic-based

solution with good results in practical applications. Finally, we show how time series

prediction from multiple locations can be improved when the time series are grouped

based on characteristics related to location, due to spatial correlation properties of the

data. In the following sections we describe in detail each of the above techniques.

7
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2.1 Locality-sensitive hashing

One of the most fundamental data-mining problems is finding similar data points, that

are in proximity according to a given distance measure. The naive approach of com-

puting the distance for every pair of points is prohibitively large for most real world

datasets. locality-sensitive hashing (LSH) is a family of machine learning techniques

that allow us to identify pairs of data points that are likely to be similar (close under a

given distance measure), without considering every pair of points, therefore reducing

the quadratic growth in computation time of pairwise computations. The range of ap-

plications for LSH is wide and includes finding similar audio signals, images, and text

documents. We propose LSH algorithms and data structures for finding similar human

mobility trajectories and patterns of movement.

General hashing is the process of transforming data of arbitrary size into fixed-sized

values, referred to as keys or buckets. By indexing data with short hash keys, the look

up and retrieval time is faster than by using the original data, becoming nearly constant

time in the size of the dataset. Good hash functions are fast to compute and minimize

the collision probability, which is the probability that two different objects are hashed

to the same bucket. Conversely, the idea behind locality-sensitive hashing is to increase

this probability, in the case of distinct but similar objects (see Figure 2.1). The locality-

sensitive hash functions are designed such that two similar objects are more likely to

arrive in the same bucket than two dissimilar objects. This allows for the search space

of finding objects similar to a given query to be reduced to objects in the same bucket.

Figure 2.1: General hashing (left) and locality-sensitive hashing (right).

Formally, two objects are similar (or close) if the distance between them is at most r,

and are considered dissimilar (or far), if the distance is at least R= cr, for c> 1. Define

by p1 the probability that two nearby objects are hashed to the same value (bucket) and

p2 the probability of far-away objects to collide. Any function with these properties is

said to be part of the (r,cr, p1, p2)− sensitive family F of functions.
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Definition 1 (Locality-sensitive families). Let d be a distance measure defined on two

objects T1 and T2. Given the values r > 0, c < 1, 0 ≤ p1, p2 ≤ 1 a family H of hash

functions satisfies the following conditions for every f ∈H :

1. if d(T1,T2)≤ r, then Pr( f (T1) = f (T2))≥ p1;

2. if d(T1,T2)≥ cr, then Pr( f (T1) = f (T2))≤ p2.

Definition 2 (Sensitivity). A family of hash functions is (r,cr, p1, p2)-sensitive when

the collision probabilities p1, p2 satisfy p1 > p2.

Good locality-sensitive families have large p1 and low p2; the gap between these prob-

abilities gives the sensitivity of the family and is measured by ρ= log1/p1
log1/p2

. This gap can

be widened through a process called amplification, which can be realised by AND and

OR-constructions. Given a family of LSH functions F, an AND-construction builds

a new family of functions F ′, where f ′ is the set of functions { f1, . . . , fr} from the

family F . Then f ′(x) = f ′(y) if fi(x) = fi(y) for all i ∈ {1,r}. OR-constructions

work similarly, with the difference that the previous statement is true for at least one

of i ∈ {1,r}. The functions in any locality-sensitive family are chosen independently,

therefore AND and OR-constructions give rise to (r,cr, pr
1, pr

2) and (r,cr,(1− p1)
r,(1−

p2)
r)−sensitive families, respectively. By choosing the number of amplifications care-

fully and cascading AND and OR constructions the low probability, p1, gets closer to

0 and the high probability, p2, gets closer to 1.

Based on a set of functions from a locality-sensitive hashing family, we can define the

sketch of an object.

Definition 3 (Sketch). For a set of locality-sensitive hashing functions belonging to the

same family, { f1, . . . , fr}, the sketch of an object x is the sequence { f1(x), . . . , fr(x)}.

We propose algorithms and data structures to solve machine learning queries involv-

ing the similarity of trajectories with the use of sketches. Depending on the distance

measure the task involves, we build different types of sketches. In general, not all dis-

tance measures admit a locality-sensitive hashing family. We introduce three distance

measures for which we propose locality-sensitive hashing families.

Distance measures for trajectories

In what follows we consider distances between trajectories, which are simply ordered

sequences of 2 dimensional points in the Euclidean plane. We consider two trajectories
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T1 = {u1,u2, . . .um1} and T2 = {v1,v2, . . .vm2}, of length m1 (number of vertices) and

m2, respectively. The distance between T1 and T2 is a function of the distances between

pairs of points. Which pairs of points are considered in this computation depends on

the chosen distance metric. A visualisation of two popular metrics can be seen in

Figure 2.2.

Figure 2.2: Hausdorff distance (left) is computed by considering the distances between

every pair of points. Fréchet distance (right) finds pairings of points with minimum cost.

Hausdorff distance

Hausdorff distance was first introduced by Hausdorff in 1912 and is a common dis-

tance measure for curves; it is often applied in computer vision and graphics for image

matching, because it gives a straightforward and intuitive way of comparing shapes. In

its discrete version, it computes the maximum distance from every point on a trajectory

to the other trajectory, formally:

Definition 4 (Hausdorff distance). The Hausdorff distance between T1 and T2 is:

H(T1,T2) = max{max
u∈T1

min
v∈T2

d(u,v),max
v∈T2

min
u∈T1

d(u,v)},

where d is any metric.

Here and in the following definitions d(u,v) measures the Euclidean distance between

the two points u and v.

The complexity of computing Hausdorff distance between the two trajectories is O((m1+

m2) log(m1 +m2)) (Alt et al., 1995), using Voronoi diagrams (Huttenlocher et al.,

1992). For the Hausdorff metric, Backurs and Sidiropoulos (2016) show that it admits

embeddings with constant distortion and constant dimension. We propose locality-

sensitive hashing families for the Hausdorff distance and prove the theoretical bounds

for the collision probabilities p1 and p2.
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Fréchet distance

The Fréchet distance is another common distance measure, that is generally believed to

be more appropriate than Hausdorff for comparing curves in a plane (Alt et al., 1995).

As opposed to the Hausdorff distance, it takes into account both the location and the

ordering of the vertices in the curves. It is popularly called the “dog leash distance” -

intuitively, it describes the length of the shortest leash that a person traversing a finite

curve should have for their dog, if both the person and the dog can vary their speed.

Formally, to define the Fréchet distance we use the concept of traversal (as in Driemel

and Silvestri (2017)):

Definition 5 (Traversal). Given two trajectories T1,T2, of sizes m1,m2 respectively, a

traversal τ = {(i1, j1),(i2, j2), · · · ,(il, jl)} is a sequence of pairs of indices referring to

a pairing of vertices from the two curves with the properties:

1. i1 = 1, j1 = 1, il = m1 and jl = m2

2. ∀(ik, jk) ∈ τ : (ik+1− ik) ∈ {0,1}∧ ( jk+1− jk) ∈ {0,1}

3. ∀(ik, jk) ∈ τ : (ik+1− ik)+( jk+1− jk)≥ 1.

An example of traversal is shown in Figure 2.2. Intuitively, a traversal is any pairing

of vertices from the two curves in which no vertex is left out and all relations are

either one-to-one or many-to-one. The cost of a traversal is the maximum distance

between paired vertices. The discrete Fréchet distance is the minimum cost amongst

all traversals.

Definition 6 (Discrete Fréchet distance). Let T be the set of all traversals between

two trajectories T1 and T2. The discrete Fréchet distance F(T1,T2) between them is:

F(T1,T2) = min
τ∈T

max
(ik, jk)∈τ

d(uik ,v jk),

where d(uik ,v jk) is the distance between the vertices with uik ∈ T1 and v jk ∈ T2.

The running time for computing the Fréchet distance between the two trajectories T1,T2

is O(m1m2), which makes the naive algorithm for similar items search expensive. As

discussed in Indyk et al. (2004), there is no trivial low dimensional embedding for

the Fréchet distance. Driemel and Silvestri (2017) were the first to propose locality-

sensitive hashing families for the Fréchet distance. Their method snaps trajectory ver-

tices to vertices in grids, thus reducing the space of possible point coordinates to the
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coordinates of the grid vertices. The sequence of grid vertices corresponding to each

trajectory serves as the hash. We propose a different method for building the hash

families that uses randomness to further improve the collision probabilities and sizes

of the hashes. We then use these hash families to build data structures that speed up

the computation of typical machine learning queries for trajectories, such as clustering

or nearest neighbours.

Dynamic time warping distance

Dynamic time warping (DTW) is a universal measure of similarity for timeseries that

can vary in speed. Applications include matching of temporal sequences of video

(Reyes et al., 2011), scoring audio alignments (Kaprykowsky and Rodet, 2006), clus-

tering vessel trajectories (de Vries et al., 2012). Similarly to Fréchet distance, it con-

siders all traversals between two curves, however, the cost of a traversal is computed

by summing up the distances between pairs of vertices instead of taking the maximum.

Formally, we defined the DTW distance as:

Definition 7 (Dynamic time warping distance). Let T be the set of all traversals be-

tween two trajectories T1 and T2. The dynamic time warping distance DTW (T1,T2)

between them is:

DTW (T1,T2) = min
τ∈T

∑
(ik, jk)∈τ

d(uik ,v jk),

where d(uik ,v jk) is the distance between the vertices with uik ∈ T1 and v jk ∈ T2.

The computation time is the same as for the Fréchet distance, O(m1m2). In general,

for similarity search for DTW there are no data structures with provable guarantees,

but several works propose heuristics (Chen et al., 2009; Rakthanmanon et al., 2012).

While proving theoretical bounds for the hashing families for DTW distance is outside

the scope of this work, we show experimentally that the type of families proposed for

Fréchet distance are suitable in practice for DTW.

Distance measure for sequences

In our proposed method we compute sketches for trajectories based on the distance of

interest. Comparing sketches instead of full trajectories drastically reduces the amount
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of computation for finding similar trajectories, partly because of the limited size of

the sketches alphabet. We utilise two types of distance measures suited for sequence

comparison.

Definition 8 (Hamming distance). The Hamming distance between two sequences is

the number of positions where the symbols are different.

Definition 9 (Edit distance). The edit distance between two sequences is the number

of insertions, deletions, and substitutions needed to transform one sequence into the

other.

We show how to build the sketches and how the distances between them are computed

in Chapter 3.

2.2 Geospatial clustering

A different technique that we use to preprocess data locally is geospatial clustering. In

general, clustering is the task of grouping data points such that elements of a group are

more similar to each other than to the elements in other groups. For geospatial clus-

tering the data points have a physical location, which can be described by geophysical

coordinates. The data points can refer to actual points, but also line segments, poly-

lines, curves, etc. The definition of similarity is task-dependent. It can be described

by common distance measures, such as Euclidean (for points) or Hausdorff (for line

segments), or by more complex functions of distances; for example, in some context,

one may consider that two curves are similar if the endpoints are geographically close,

without any assumption about the rest of the curves.

Typically, spatial clustering algorithms can be split into partition and fuzzy clustering,

depending on whether an object belongs to a single or multiple clusters. Based on the

clustering method, we can further categorise spatial clustering algorithms as:

1. Hierarchical

2. Density-based

3. Model-based.

Hierarchical clustering algorithms work by either aggregation or division. In agglom-

erative hierarchical algorithms every data point (object) starts by being a cluster; in the

next stages clusters are merged based on proximity. Divisive algorithms work in top-
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down approach, by separating the points. These approaches are often computationally

expensive, especially in the presence of complex distance measures between entities

(Nanni, 2005).

Density based algorithms work by finding areas where data points are concentrated

and marking as noise points that are in sparse areas. One such popular algorithm is

DBSCAN (Ester et al., 1996), that is widely used in spatial data mining applications

and beyond, such as weather forecasting (Dey and Chakraborty, 2015).

In model based clustering algorithms the assumption is that the data comes from a mix-

ture of probability distributions, each corresponding to a cluster (Fraley and Raftery,

2002). The algorithms then optimise the fit between data and the set of models using

likelihood approaches. This clustering method has several advantages, such that it al-

lows for clusters of different sizes and volume. However, results are heavily dependent

on assumptions about the underlying model of the data.

We use geospatial clustering as a heuristic for a network design problem that we show

to be NP-hard. We propose a new type of fast projection based clustering of trajec-

tories (expressed as origin-destination pairs of locations) that reduces significantly the

running time, while giving good results in practice.

2.3 Spatial correlation and hierarchical forecasting

Hierarchical forecasting of time series data refers to the strategy of grouping time series

at multiple resolution levels. When time series have location information attached, ex-

ploiting the inherent aggregation structures of spatial data points can lead to improved

prediction accuracy. For example, predicting temperature time series in a narrow area

is more prone to errors than predicting the average for a large area, but not necessarily

if the larger area covers a variety of weather conditions. For temperature, an effec-

tive spatial resolution depends on the location characteristics (varying between 5km

to 18km for Mediterranean and European continental cities, as shown by Giunta et al.

(2019)). A similar effect can be seen in the case of predicting solar power production.

One difficulty in predicting solar power production comes from the sudden changes

in the output due to the rapid and stochastic movement of clouds. This can be cir-

cumvented by considering ensembles of power plants rather than individual ones. In
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certain cases the aggregated output is more smooth depending on the geographic dis-

tribution of the power plants: for a wider distribution the variability in the production

is reduced (Graabak and Korps, 2016). This effect, known as the smoothing effect,

comes from the delay in weather patterns that manifest themselves at different times

at different sites (Ackermann and Sder, 2002). Over a large area the changing weather

patterns bring a slower rate of change, as opposed to small areas where the fluctua-

tions happen sequentially, giving a less smooth output curve. The smoothing effect

was demonstrated by Wiemken et al. (2001) and Widen (2011) for solar power plants

in Germany and Sweden, respectively. One main finding of the first study is that the

standard deviation curve of the average daily power production decreases significantly

for an ensemble of PV plants; the effect is driven by the spatial distribution, rather

than the number of sites. Of course, the scale of the effect depends on the temporal

and spatial resolutions. The experiments were run on 10 years of radiation data from

6 stations (with distances between 200km and 680km). The spatial cross-correlation

of the hourly data shows an exponential decay as a function of interstation distance.

Spatial correlation and the smoothing effect have important consequences for both the

placement of power plants and for forecasting algorithms.

Fonseca Junior et al. (2014) showed that the smoothing effect due to spatial correlation

has a similar impact on the accuracy of predictions of a SVM forecasting model as

applying a dimensionality reduction method on the input data. Similarly to the models

we propose, their models use numerical weather forecast at the location of each power

plant. The hourly power output was predicted for 4 regions in Japan; these follow

the traditional geopolitical regional division. The authors show that applying principal

component analysis (PCA) to remove redundant information in the weather data gives a

10% improvement in accuracy for the proposed prediction model, but the improvement

is dependent on the type of region. One important factor is the diversity of the climate

in that region.

In this work we propose an ensemble model that predicts the day ahead total power

output time series for a region with 15 solar power plants. We show that building

separate models for two subregions with similar weather conditions gives a higher

accuracy than having a model that directly predicts the total. Moreover, weighting the

models based on their performance on the training sets corresponding to the two areas

further improves the accuracy of the ensemble.





Chapter 3

Multi-resolution sketches and locality

sensitive hashing for fast trajectory

processing

3.1 Introduction

Location analytics is a fundamental aspect of insights from GPS, sensor and mobile

phone data, with applications in various domains ranging from social sciences, com-

munication networks to smart cities and transport. Effective analysis depends on fast

response to basic queries, for example, finding the nearest neighbour (or all near neigh-

bours) of a given trajectory. Ability to efficiently update the query database – e.g.,

inserting a new trajectory or adding new points to an existing trajectory – helps one to

handle streams of trajectory data continuously updated in real time.

Trajectories are usually compared using Hausdorff distance (Atallah, 1983), Fréchet

distance (Eiter and Mannila, 1994), or the dynamic time warping (DTW) distance (Sakoe

and Chiba, 1978). The last two are most popular as they incorporate the intrinsic se-

quential nature of the trajectories in the comparison. However, these distances are

computationally challenging to apply to large datasets. Dynamic programming algo-

A version of this chapter is published in Astefanoaei et al. (2018).
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rithms to compute Fréchet and DTW between two trajectories of length m require

O(m2) time per comparison, which makes them prohibitive in large datasets.

Nearest neighbour searching on points in the exact version require either linear query

time or space exponential in dimension, popularly referred to as the curse of dimen-

sionality. Recently it was proven (Alman and Williams, 2015) that a query time sub-

linear in n (number of instances) for the batched Hamming nearest neighbour problem

would refute the Strong Exponential Time Hypothesis (SETH). With such barriers, re-

searchers turned to approximate nearest neighbour search. Formally, a c-approximate

nearest neighbour algorithm will return an item whose distance to the query is at most

c times the true nearest neighbour of the query item. Indyk and Motwani (1998) were

the first to develop Locality-sensitive hashing (LSH) for this approximation problem,

and it was subsequently improved upon in various works to obtain a query time sub-

linear in n, and polynomial dependence in d in all parameters (see for example: Gionis

et al. (1999); Indyk (2001); Charikar (2002); Panigrahy (2006); Andoni and Razen-

shteyn (2015)). The main idea in LSH is to construct a hash function that ensures that

similar items are usually hashed to the same buckets, while dissimilar items are hashed

to different buckets.

However, unlike point datasets, where one can exploit the bounded doubling dimension

of the underlying metric space (Arya et al., 2008; Backurs and Sidiropoulos, 2016),

compressing trajectory data while preserving these distances is difficult in general,

when no constraints are imposed on trajectories: the space of trajectories under Fréchet

distance does not have a bounded doubling dimension and does not easily admit a low

dimensional embedding (Driemel et al., 2016).

LSH for trajectories. Indyk (2002) describes a version of locality sensitive hashing

for product spaces that apply to Fréchet distances. However, this approach has an

immense space requirement, which makes it impractical in GPS datasets. A recent

work by Driemel and Silvestri (2017) gives simpler mechanisms for locality sensitive

hashing of trajectories. This method works by snapping the vertices of trajectories

to grids, so that trajectories with Fréchet distance much smaller than the grid size are

likely to snap to the same vertices. The vertex order on the grid then serves as a locality

sensitive hash.

Apart from near neighbour queries, other important research problems in trajectory

datasets include quickly estimating the distance between two trajectories in the dataset,
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clustering trajectories, or detecting whether one trajectory is similar to a sub-trajectory

of another, etc. The above works do not focus on such problems. Furthermore, it

is highly desirable to obtain a data structure that can support fast insertions of new

trajectories into the dataset, and also one where the user can specify a desired degree

of detail.

Our contributions. We devise a hierarchy of sketches for trajectories, that not only

perform the basic tasks of locality sensitive hashing and near neighbour search, but

can also be used to directly estimate distances between trajectories, cluster trajectories,

detect subtrajectories, etc. Our sketches and hash families have the added advantage

of being simpler than existing techniques.

Our basic sketch is simply a bit vector representing the intersection of the trajectory

with a randomly deployed set of disks in the plane (see Figure 3.1); a bit element is

1 if the trajectory intersects the corresponding disk and 0 otherwise. This bit vector

can act as a simple locality sensitive hash with provable probability guarantee. The

main insight is that when disks are deployed randomly, similar trajectories are likely

to intersect a similar set of disks. A simple measure of distance using this sketch is the

Hamming distance giving the number of bits where two sketches differ. The ordered

version of this sketch is a sequence representing the order in which the trajectory enters

and exits the disks. These ideas are shown in Figure 3.1. Measures such as edit distance

(Levenshtein, 1966) can be used here to find how similar two sketches are. In the

hierarchic version, we deploy disks of a different size at each level of the hierarchy,

with the “highest” level consisting of the largest disks.

In real data analysis, our scales of interest, and therefore the size of the hierarchy are

bounded by the application and the platform. For example, GPS localisation measure-

ments have errors up to a few meters, and thus closeness of GPS data is not significant

at scales smaller than this size. Similarly, beyond a certain distance, for example hun-

dreds of kilometres, data points can simply be treated as far, since applications such

as near neighbour search are not useful beyond such distances. Let us call these lower

and upper bounds L and U .

We make use of these bounds to get theoretically rigorous results of practical impor-

tance. With trajectories d distance apart localised in a region of area A we can show

the following:

• there is a constant factor approximation of the distance between them in time
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Figure 3.1: Trajectory sketches with respect to randomly deployed disks. Similar trajec-

tories like a and b are likely to pass through same set/sequence of disks. For trajectory

a, the basic unordered sketch is 111100, the ordered sketch recording entry and exists

is 1,2,3,2,4,3,4 . . . .

O(min(m, log(U/d) log(A/d2)))

• a new trajectory can be inserted into the sketch database in O(m log(A/L2)) time

• an O(m) approximation to the nearest neighbour query can be computed in

O(m log2 n) time.

Experimental results Experimental results on two real datasets show that the distance

metric based on the basic unordered sketch is strongly correlated with Hausdorff dis-

tance, and the distance based on the ordered sketch is correlated with Fréchet and

DTW distances. The correlation is shown by comparing the Hausdorff and Fréchet

distances with our proposed metrics for a set of trajectories with varying distances.

The correlations hold even when a large proportion of the data is missing, for example

due to sensing/communication failure or lack of resources. The sketch-based distances

can be computed orders of magnitude faster than Hausdorff, Fréchet , or DTW.

We found that a flat structure – about 50 disks of 2km radius for areas between 10km2

and 14km2 – gives good practical results. Observe that with bit vector size of 50,

Hamming distance or matching of hash can be made extremely fast. We used this

feature for data pruning in nearest neighbour search. Using the sketch, we identified

trajectories of same or similar sketch for comparison, and discarded everything else.

Then we applied Hausdorff and Fréchet distance computation on the small selected

set. The sketch achieved a pruning ratio of about 80% (fraction of discarded items),

while achieving accuracy of 80% – where the true nearest neighbour was found in the
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selected set. As a result of the high pruning ratio, on large datasets, this process runs

an order of magnitude faster.

In other experiments we studied the effect of size and number of disks used. We also

computed the error in distance to the nearest neighbour in the multi-resolution version

of the sketch and found this to be usually low.

The rest of the paper is organised as follows. In Section 2 we present related works.

In Section 3 we describe the type of queries that we are considering. In Sections 4 and

5 we describe our sketches and prove that they provide an LSH family (thus solving

the near neighbour problems). In Section 6 we describe the MRTS (Multi Resolution

Trajectory Sketch) data structure and show how to handle insertions, distance estima-

tion, classification and clustering queries. Section 7 contains our detailed experimental

results.

3.2 Related work

Distances between curves are challenging to compute. For inputs of length m, Fréchet

distance F(·) and DTW distance DTW (·) can be computed in O(m2) (Alt and Godau,

1995; Sakoe and Chiba, 1978). Recent results show that assuming strong exponen-

tial time hypothesis, strongly subquadratic time algorithms are impossible for Fréchet

(Bringmann, 2014) . Thus, in datasets of n trajectories, simple near neighbour search

will run in O(nm2) time. Indyk’s approach to LSH using product metrics (Indyk, 2002)

achieves an approximation of O(logm+ log logn) and nearest neighbour query time of

O(mO(1) logn) using O(|X |
√

m (m
√

mn)2) storage, where X is the domain in question –

loosely, the area of the region containing the trajectories. This large data structure to

be constructed and stored, and the resultant query time polynomial in m are the main

challenges of using this method in GPS datasets with large m.

The recent work by Driemel and Silvestri (2017) uses more intuitive methods to achieve

locality sensitive hashing for Fréchet and DTW. The first strategy proposed is to snap

trajectories to a grid placed with a random translation. The hash of a trajectory in

this system is given by the sequence of vertices its snapped version traverses. For two

trajectories P and Q, the probability of having identical hash depends on how the grid

cell size δ compares to length m and the Fréchet distance dF(P,Q). In the plane, the
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probability of identical hash can be shown to be
(

1− 4mdF(P,Q)

δ

)
. In this scheme,

it is possible to construct an LSH with approximation factor linear in m for parameters

suitably chosen for a pair of trajectories. A different scheme in (Driemel and Silvestri,

2017) proposes to apply a fixed sequence of random perturbations to the vertices of

a trajectory P before snapping them to nearest grid points. The query undergoes a

different perturbation per vertex before snapping. This scheme achieves a constant ap-

proximation factor, but the probability of hashes matching for two similar trajectories

can be shown only to be more than ≈ 2−4m, which is impractically small for datasets

with long GPS trajectories. Since this scheme is meant mainly for answering near

neighbour queries, it does not provide answers to various other types of queries one

may be interested in, e.g., quickly estimating the distance between two trajectories,

clustering, subtrajectory detection, etc.

Other works in managing large trajectory datasets include methods of simplification,

where the goal is to construct an approximate curve that is close to the original. The

Douglas-Peucker algorithm (Douglas and Peucker, 1973) is possibly the most popular

algorithm of this type, which works well in many practical cases. A recent work uses

topological persistence to simplify trajectories online, and find the significant turns at

different resolutions (Katsikouli et al., 2014). Compact sketches based on topology

of the domain have been developed by Ghosh et al. (2018). These methods treat tra-

jectories individually, and do not provide any guarantees on distance computation or

search in datasets. The power of large cluster computers has been exploited by Xie

et al. (2017) by developing indexing for segmented trajectories. In-network mining for

popular subtrajectories is considered by Katsikouli et al. (2018).

In contrast to these works, our focus was to speedup trajectory processing by building

highly compressed summaries. This enabled us to rapidly estimate distances between

trajectories and prune large fractions of data when searching for similar trajectories.

3.3 Problem description and background

We let A denote the area of the region (typically a square or a rectangle) of interest

that contains all the trajectory data. Let n denote the number of trajectories in the

dataset. When comparing two trajectories, we will use the term “distance between

them” to mean either the Hausdorff or the Fréchet distance (defined in Chapter 2).
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We define a trajectory T of length m as a sequence of ordered embedded vertices

T = {v0,v1, . . .vm}. We do not include other information than the order of the vertices,

so essentially we treat trajectories as curves. The discrete representation simplifies the

application of algorithms directly to the data without need for interpolation.

We assume an upper bound U and a lower bound L on the distances of interest. This

means that we only care about the actual distance between a pair of trajectories if their

distance is between L and U . For other pairs of trajectories, i.e., trajectories that are

farther than U apart or within L of each other , we just want to detect if this happens,

so if they are either farther or within the distance. We partition the interval [L,U ] into

subintervals, depending on the degree of detail desired by the user.

Let a be a user-specified constant larger than 1 (otherwise we set a = 2) and let l =

loga(U/L). Define ri = U/ai for i ∈ {0, . . . , l}. Thus r0 = U , and the ri’s decrease

geometrically until rl = L. These ri will serve as partitions of [L,U ] – the smaller the

ri, the greater the accuracy.

We provide a data structure that performs the following operations efficiently for a

given trajectory T (see Table 3.1 for the full set of notations):

1. (c,r)-near Neighbour queries: if there exists a trajectory in the dataset within

distance r, return a trajectory in the dataset that is within cr of T . Our methods al-

low a linear approximation c = O(m) answer with high probability in O(m logn)

time.

2. c-approximate nearest neighbour queries: return a trajectory whose distance

to T is within c times the distance of T to its nearest trajectory in the dataset. We

can answer the c-approximate nearest neighbour queries in O(m log2 n) time.

3. Clustering/classification: we can partition the dataset of n trajectories into

P1, · · · ,Pl , where trajectories in the set Pi are within ri and at least ri+1 away from

the query trajectory T . The entire partitioning takes O(l min(m, log(A/L2)))

time. To compute only Pi for a given i, our data structure takes O(min(m, log(A/L2)))

time.

4. Distance estimation: Given another trajectory T ′, we can compute a constant

factor approximation of the distance d between T and T ′ in O(min(m, log(U/L) log(A/d2))

time, where A is the area of the region where the trajectories are deployed.

5. Subtrajectory detection: Given another trajectory T ′, we can identify if it is



24 Chapter 3. MRS and LSH for fast trajectory processing

similar to a subtrajectory of trajectory T in time O((min(m, log(A/L2)))2). No-

tice that a subcurve of a curve may have a large Fréchet or Hausdorff distance

to the original curve, and so such queries are not merely distance queries.

6. Finally, the data structure handles fast insertions of trajectories to the dataset.

Inserting a new trajectory of length m into our data structure takes O(m log(A/L2) log(U/L))

time (Lemma 3).

Symbol Description

T trajectory (sequence of GPS locations)

m length of trajectory

n number of trajectories

A area of the map

H(T1,T2) Hausdorff distance between trajectories T1 and T2

F(T1,T2) Fréchet distance between trajectories T1 and T2

D number of disks

r radius of a disk

SD,r(T ),S(T ) binary sketch

OSD,r(T ),OS(T ) ordered sketch

dD,r distance between sketches (binary or ordered)

U, L upper and lower bounds on the degree of detail

` number of layers

Li layer i

Di number of disks on layer i

ri radius of disks on layer i

Adif area of the symmetric difference

ESTkF estimator of kF

Table 3.1: Table of notations

Locality-sensitive hashing. Solutions for approximate nearest neighbours often em-

ploy Locality-sensitive hashing (LSH) algorithms which ensure that the probability of

two objects being attributed to the same hash is high for similar objects and low for

substantially different objects. A family of hash functions is a collection of mappings

that are all defined on the same sets: mappings from the set of all objects, which is

of arbitrary size to a set of fixed size (the set of “buckets”). See Chapter 2 for formal
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definitions for locality-sensitive hashing families and the related concepts.

Distance Measures. We define locality-sensitive hashing families for the Hausdorff

and Fréchet distances and prove theoretical bounds on the collision probabilities; we

show experimentally that a similar method gives good results in practice for DTW.

3.3.1 LSH families and the near-neighbour problem

Given a (r,cr, p1, p2)-sensitive hashing family, there is a standard framework for solv-

ing (c,r)-near neighbour queries. Using this framework, one can also solve the c-

approximate nearest neighbour queries. We briefly describe it here, and refer the reader

to more comprehensive descriptions (Indyk and Motwani, 1998; Driemel and Silvestri,

2017) for details. First, we construct a new family H ′
of hash functions by concate-

nating ` = max{1, logp2
1/n} hash functions. This decreases the collision probability

to at most 1/n. We then choose k = (1/p`1) hash functions from the family H ′
, and

insert each trajectory into k hash tables. This completes the preprocessing phase. Once

the query arrives, we search among all trajectories that collide with the query in the k

hash tables, and compute the distance of the query trajectory to such trajectories. We

can stop as soon as a trajectory within cr distance is found, or in the reporting version,

report all trajectories within cr. The space and query time of such a data structure is

governed by the parameter ρ = log p1/ log p2. The space used is O(n1+ρ + nm) and

the query time is O((m logm)nρ) for Hausdorff distance and O(m2nρ) for Fréchet dis-

tance.

For the LSH families we derive in this paper far away trajectories never hash to the

same bucket. In this case, the query time is O(m). These query times are for the

algorithm to work with a constant probability. To get (c,r)-near neighbours with prob-

ability at least 1−1/n, we can repeat the above process logn times, leading to an extra

logarithmic overhead in the space and query time. Given a data structure to solve the

(c,r)-near neighbour problem, one can use the concept of ring trees as described by

Indyk and Motwani (1998) to solve the c-approximate nearest neighbour problem.
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3.4 Compact sketches and LSH for near neighbours

We propose a simple strategy that allows us to build LSH schemes for Hausdorff and

Fréchet distances. The sketches are based on randomly deploying disks on a map

and considering their intersections with trajectories. We then define metrics on these

sketches that are related to the distances between the corresponding trajectories.

3.4.1 Binary sketches for Hausdorff distance

Our approach is based on the observation that if two trajectories T1,T2 are such that

the Hausdorff distance H(T1,T2) is small, then they both go through approximately the

same neighbourhoods on the map.

Fix a radius r > 0, and let D = Θ(A/r2). We define our sketch S(T ) of a trajectory T

as the record of its intersection with D random disks on a map:

Definition 10 ((D,r)-Binary Sketch). The Binary Sketch of a trajectory T is the bi-

nary vector SD,r(T ) = e1 . . .eD of length D, defined in terms of a set of D random but

fixed disks of radius r. The vector element ei = 1 if the disk i intersects trajectory T ,

otherwise it is 0.

We define the measure of distance between the sketches as the number of bits that are

different:

Definition 11 ((D,r)- Binary Sketch Distance). The Binary Sketch Distance between

two trajectories T1,T2 is the Hamming distance (Hamming, 1950) between their (D,r)-

Binary Sketches. That is, the number of indices with different entries: dD,r(T1,T2) =∣∣∣{i : e1
i 6= e2

i }
∣∣∣.

In other words, this is the L1 norm of the binary difference of the two vectors and it

represents the number of disks that intersect exactly one of the trajectories.

3.4.1.1 Data structures to speed up sketch computation

Let T be a trajectory of length m. In O(mD) time we can test each disk for every

point in the trajectory, and retrieve the set of disks intersected by the trajectory, i.e., the

position of 1s in the sketch vector. However, when D is large (recall that D=Θ(A/r2)),

we can actually do better.
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Notice that for a given point p on the trajectory, we want to quickly determine which of

the D disks of radius r contain p. This is essentially a range searching problem: Let Q

denote the centres of the D disks, and B denote a ball of radius r around p. A circular

range query for B determines which points in Q lie inside B. The disks corresponding

to those points are exactly those that contain p (the centre of B). Using known range

searching data structures from computational geometry (Matousek, 1992; Aggarwal

et al., 1990), this can be accomplished in O(logD+ k) time, where k is the number of

disks containing p. In summary:

Observation 1. Given a set of D disks of radius r and a trajectory T of length m, the

set of k disks that intersect T can be computed in O(m logD+ k) time.

3.4.1.1.1 Computing the binary sketch distance. For large r such that D = O(m),

one can compute the Hamming distance between sketches of length D in the straight-

forward manner. For small r, D is larger than the number of disks intersected by the

trajectory (which will never be more than m, but could be significantly smaller), re-

sulting in sparse bit vectors. When D is large enough that the vectors are very sparse,

we do not store the entire sketch but just the indices of the disks intersected by the

trajectory. Assume that no trajectory intersects more than I disks, where I << D, and

I = O(m). Then we can actually compute the binary sketch distance in O(I log I) time

using a set intersection query, where the two sets are the sets of disks intersected by

each trajectory. Thus, computing the distance takes at most O(min(D,m logm)) time,

and is typically significantly smaller; e.g. for uniformly sampled trajectories, this can

be done in O((m/r) log(m/r)) time.

3.4.1.2 Binary sketches provide an LSH family

Given two trajectories in an area of size A and a disk of radius r, the LSH family is

defined in the following theorem:

Theorem 1. Let T1,T2 be two trajectories of lengths m1 and m2 respectively, intersect-

ing at least one disk. Let m = min(m1,m2) and c > 1 a constant. Then the following

are true:

1. If H(T1,T2)<
2r
c then P(S(T1) = S(T2))> 1− 8πr2Dm

cA

2. If H(T1,T2)> 2r then P(S(T1) = S(T2))≤ 1− 2πr2

A .1

1Thank you to Haotian Wang for the correction.
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In order to prove the theorem, we need a geometric lemma.

Lemma 1. The probability that a randomly placed disk separates two vertices at dis-

tance h is bounded by 4πrh/A.

Proof. The disk separates the vertices when the centre lies in the symmetric difference

of the disks of radius r centred at the two vertices. Let us call this the symmetric

difference area. This is shown pictorially in Figure 3.2.

Figure 3.2: Symmetric difference area: A disk of radius R separates the two vertices if

and only if its centre lies in the symmetric difference of disks at those vertices given by

the shaded area.

This area is bounded by 4πrh. Thus the probability that a particular disk x separates

the vertices, is at most 4πrh/A.

Proof of Theorem 1. (1) For every u ∈ T1 there is a v ∈ T2 such that d(u,v) ≤
H(T1,T2) = H, and vice versa. Let us refer to this set of pairs as the closest pairs.

Any disk of radius r that contains u but not any vertex from T2, must also not contain

v, and therefore must have its centre in the symmetric difference area for u and v. This

applies for all closest pairs. Thus, any disk i such that d1
i 6= d2

i must lie in the symmet-

ric difference of at least one closest pair. There are m closest pairs and any closest pair

is separated by a distance at most H. By union bound, the probability that the centre

of a disk is in a symmetric difference area is bounded by (4πmrH)/A. Substituting

H < 2r/c gives the desired bound. To prove (2), we note that if the distance is larger

than 2r, then there is at least one pair where the distance is larger than 2r. The prob-

ability that the sketches are the same is the probability that no disk intersects either of

the points in the pair, which is at most 1− 2πr2

A .

Observe that setting D = Θ(A/r2) and c = O(m) gives us a constant probability of

collision, and thus by the standard framework of (c,r)-near neighbour data structure,
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we obtain the desired space and query bounds.

3.4.2 Ordered sketches for Fréchet distance

As opposed to Hausdorff, the Fréchet distance between trajectories takes into account

the ordering of the vertices. Therefore, we propose sketches that maintain the order of

the intersections with the disks.

Definition 12 (Ordered Sketch). Let T be a trajectory and D the set of disks spread

on the map. We define by the Ordered Sketch the sequence of indices of the disks that

T enters and exits. We denote it by OS(T ).

Figure 3.1 shows a trajectory a passing through disks 1,2,3,4. The trajectory first

enters disk 1, exits 1, enters disk 2, enters disk 3 and so on.

We define a measure of distance (dissimilarity) and also a measure of similarity be-

tween two ordered sketches, and therefore, between their corresponding trajectories.

These will help us answer distance related queries when we describe our Multi Reso-

lution Trajectory Sketch (MRTS) data structure.

Definition 13 ((D,r)-Ordered Sketch Distance). The Ordered Sketch Distance between

two trajectories T1,T2 denoted by is the edit distance between their (D,r) Ordered

Sketches. That is, the number of insertions, deletions and substitutions required to

transform one ordered sketch into another.

Definition 14 ((D,r)-LCS measure). The LCSM (Longest Common Subsequence Mea-

sure) between two trajectories T1,T2 is the length of the LCS between their (D,r) Or-

dered sketches.

3.4.2.1 Ordered sketches provide an LSH family

We first find the probability of collision of two trajectories in terms of their Fréchet

distance.

Lemma 2. Given two trajectories T1,T2 with m1,m2 vertices, m = min(m1,m2) and D

disks of radius r the probability that they hash to the same sequence is bounded by:

P(OS(T1) = OS(T2))≥ 1− 4πrDm
A

F(T1,T2).
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Proof. Suppose the trajectories do not hash to the same sequence. From Lemma 3 in

(Driemel and Silvestri, 2017) we know that an optimal traversal T will separate the

trajectories in at most m components, each of them a star. Intuitively a star component

has one vertex on one trajectory (traversal is static on this curve), and some vertices on

the other trajectory (where the traversal is happening). We consider Ek to be the event

that a disk separates a pair of vertices in the component k.

Since the component is a star, there must exist vertex v such that v is connected to all

other vertices in the component. All the lengths are less than F(T1,T2). The proba-

bility that any pair is separated is less than 4πrF(T1,T2)/A (this is just the symmetric

difference area - similar to what we had before). There are at most m components in

the traversal and D disks, therefore, by union bound, the probability that the hashes

differ is bounded by 4πrDm
A F(T1,T2).

This provides us with the following locality sensitive hash family.

Theorem 2. Let T1,T2 be two trajectories of lengths m1,m2, intersecting at least one

disk. Let A be the area of the region, r the radius of the disk, D the number of disks,

m = min(m1,m2) and c a constant. Then the following are true:

1. If F(T1,T2)<
2r
c then P(OS(T1) = OS(T2))> 1− 8πr2Dm

cA

2. If F(T1,T2)> 2r then P(OS(T1) = OS(T2))≤ 1− 2πr2

A .

Proof. For the second part, if the distance is larger than 2r, then there is at least one

pair where the distance is larger than 2r. The probability that the sketches are the same

is the probability that no disk intersects either of the points in the pair, which is at most

1− 2πr2

A . For the first part we use Lemma 2.

3.4.2.2 Choice of parameters

In applications, we assume the user chooses the values for 2r and 2r
c , which represent

the distances at which two trajectories are considered far or close, respectively. m

depends on the length of trajectories in the dataset. The size of the area where the

trajectories are located is also given. The number of disks is chosen such that they

cover most of the area with high probability - then every trajectory will intersect a

disk with high probability. Therefore setting D = c(A/r2) makes the probability of
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any given point not being covered (1−πr2/A)c(A/r2), which goes to 1
ec as c increases.

In experiments we show that a small number of disks suffices to cover a large portion

of a given area. Given these values (2r, c, A, D, m) one can compute the collision

probabilities, p1 and p2, from the above theorems. The size of the area and the number

of disks can be changed to increase or decrease p1 and p2. A practical example is

presented in the Experiments section.

3.4.3 Summary of LSH and near neighbour results

We have shown how the binary sketches and the ordered sketches provide a locality

sensitive hash family for the Hausdorff and the Fréchet distances, respectively. In both

families, setting the number of disks D = Θ(A/r2) and c = O(m) gives us a constant

collision probability of nearby trajectories, and we have low collision probability for

far-away trajectories. From the framework described in Section 3.3.1, we obtain that

Theorem 3. There exists a data structure using binary and ordered sketches, that takes

space O(n) memory words, and returns an O(m) approximation (in the Hausdorff

metric using the binary sketch, and in the Fréchet metric using the ordered sketch)

to the

1. (c,r)-near neighbour problem in O(m logn) time.

2. c-approximate nearest neighbour problem in O(m log2 n) time.

Now we turn to the other kinds of queries, and the data structure we use to solve them.

3.5 MRTS: Multi-Resolution Trajectory Sketch

In this section we describe the MRTS (Multi Resolution Trajectory Sketch), a layered

data structure that we will use to solve distance estimation, classification, clustering

and subtrajectory detection queries.

3.5.1 Description

Recall that U and L are upper and lower bounds on the degree of detail desired by the

user, and ri =U/ai for 0≤ i≤ l, with l = loga(U/L) and rl = L. Define Di = Θ(A/r2
i )
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for 0≤ i≤ l.

Our layered data structure has l layers, denoted by Li, 0≤ i≤ l. Layer Li stores

1. The binary sketches of all the n trajectories, for Di random disks of radius ri

each. When Di = Ω(m), we store the set of disks intersecting a trajectory as

opposed to the bit vector of length Di.

2. The ordered sketches of all the n trajectories, for Di random disks of radius ri

each.

3. In addition, there are forward and backward pointers between a trajectory in the

dataset and its corresponding sketches at each layer. Each sketch also stores a

counter with the number of trajectories pointing to it.

Insertions. When a new trajectory T is to be inserted in the dataset, we use the

data structure referred to in Observation 1. Computing the sketch on layer i requires

O(m logDi+ki) time, where ki is the number of disks of radius ri that intersect T . Since

Di ≤ Dl , overall, this costs us at most O(m logDll + k), where k is the total number of

disks intersecting T . Plugging in the values of Dl and l, we get

Lemma 3. A new trajectory T can be inserted into MRTS in O(m log(A/L2) log(U/L)+

k) time, where k is the total number of disks intersecting the trajectory.

Space. Any point p on a trajectory T lies in O(1) out of the Di disks for every i. This

is because Di is the number of disks required to cover the region A and the disks are

deployed uniformly at random in the domain. Thus the sketch of T on layer i requires

at most O(m) space, and so in total the sketches for the trajectory T in the entire MRTS

data structure uses O(ml) space. Since there are n trajectories,

Observation 2. The MRTS uses at most O(nm log(U/L)) words of memory in space.

Notice that O(nm) words of space are required to store the dataset. Moreover, the

bound above is pessimistic in the sense that we do not consider the fact that for densely

sampled trajectories, many points of the trajectory will lie in the same disk. In fact, one

can show that for uniformly sampled trajectories, O(r) points lie in a disk of radius r.

This reduces the space usage of our data structure to O(nm
L log(U/L)) memory words.
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3.5.2 MRTS and distance queries

Now we show how to handle other types of queries mentioned in our problem descrip-

tion. For the sake of brevity, we will restrict ourselves to the Fréchet case, which is

arguably harder than the Hausdorff case, and more interesting. We point out that all of

our results generalise to the Hausdorff case with the same (or better) bounds. However,

before we describe our query procedure, we need some geometric lemmas.

Lemma 4. Consider two disks of radius r, and let h be the distance between their

centres. Let Adi f denote the area of their symmetric difference (see Figure 3.2). Then

1) if h > 2r, Adif = 2πr2, and 2) if h≤ 2r, Adif ≥ 2rh.

Proof. Part 1) is obvious, as the disks are disjoint. For part 2), the area of the sym-

metric “lens”, or the intersection of the two disks, is given by 2r2 cos−1(h/2r)−
(h/2)

√
4r2−h2. The area of the symmetric difference is therefore

Adif = 2(πr2−2r2 cos−1(h/2r)+(h/2)
√

4r2−h2)

= 2r2(π−2(π/2− (h/2r)−O((h/2r)3)))+(h/2r)
√

1− (h/2r)2

≥ 2r2(h/r+O((h/2r)3)

≥ 2rh.

This gives us the following crucial observation:

Observation 3. Let T1 and T2 be two trajectories such that their Fréchet distance is F.

Then the probability that a randomly chosen disk of radius r intersects one trajectory

but not the other is at least 2rF/A.

This is because if we look at the component realising the Fréchet distance (the maxi-

mum length in the traversal), there must be a pair of vertices u ∈ T1 and v ∈ T2 that are

F apart. A disk separates these two vertices with probability equal to the measure of

their symmetric difference area, which by the above lemma is at least 2rF/A.

Lastly, we show that the ordered sketches already provide an upper bound on the

Fréchet distance.

Lemma 5. Let T1 and T2 be two trajectories with Fréchet distance F. Consider their

ordered sketches with D disks of radius r, and assume all vertices overlap at least one

disk. If the ordered sketches coincide, then F < 2r.
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Proof. If the ordered sketches coincide then for every vertex in T1 there is at least one

vertex in T2 such that the distance between them is lower than 2r, because they should

both belong to the same set of disks. There is a traversal that groups every pair of such

vertices, giving a cost of at most 2r. This means that an optimal traversal has a lower

cost, therefore the Fréchet distance is less than 2r.

3.5.2.1 Querying the MRTS

We now describe how we query the MRTS for different kinds of queries.

Distance Estimation. Given the indices of two trajectories T1 and T2 in the dataset,

we want to approximate the Fréchet distance between them. Note that precomputing

the distance of a newly inserted trajectory to all the existing trajectories in the dataset

trivially solves this problem in O(1) time, but the cost is the high insertion time, at

least O(m2n). The MRTS has low insertion time, and is still flexible enough to answer

such queries faster.

Let us consider the optimal traversal of the two trajectories that realises their Fréchet

distance F . As observed, this traversal can be broken down into at most m components,

each of which is a star. In some of these components the distance is O(F), whereas

in others it is significantly lower. Let k be the number of components in which the

maximum distance between the vertices of the component (the centre of the star and

the other vertices on the second trajectory) is Θ(F). We will first estimate the product

kF .

The main reason in estimating kF is that the symmetric difference area of the two tra-

jectories depends linearly on k. If k = 1, then the two trajectories travel very close

together until they reach this component; in this case the area of the symmetric differ-

ence is O(rF). On the other extreme, two trajectories could be travelling at a constant

distance F from each other (thus giving the same Fréchet distance between the trajec-

tories), but the area of the symmetric difference is O(rFk).

Let `i denote the fraction of disks on layer i that intersect one trajectory but not the

other. Clearly, `i is an unbiased estimator for the symmetric difference area (for disks

of radius ri). We compute Adi f = ∑
h
i=1 `iA/ri, and let EstkF = Adi f /h. We can show

that this is an unbiased estimator of the true value of kF , and by increasing the num-

ber of disks at each layer, we can get higher concentration for this estimator. The
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expected value of `i on the other hand equals O(rikF/A), as the probability that one

disk separates the two trajectories equals rikF/A.

Query Algorithm: Report r j, where j is the smallest value of i such that `i≥ riESTkF/A.

We conjecture that this value of r j reported is a constant factor approximation of the

Fréchet distance between the trajectories. Note that if one just wants an upper bound,

the ri corresponding to the last layer i such that Si
1 = Si

2 (the sketches coincide) gives

us an upper bound, as by Lemma 5, we know that the Fréchet distance between the

two trajectories is at most 2ri, since the sketches coincide.

This procedure requires us to examine the sketches at all levels in the worst case,

requiring O(min(m, log(U/L) log(A/d2)) time. To get an upper bound we can stop at

the first layer where we discover the sketches are different.

Classification/clustering. Our classification procedure is simple: for a given interval

[ri+1,ri], we define the set Pi to be all the trajectories that have the same sketch on layer

i of the MRTS as the query trajectory.

Using the pointers, we can report the trajectories in Pi, or, if one just needs the count,

we can read the counter value of the bucket corresponding to the sketch of the query

trajectory. Running this procedure for all 1≤ i≤ l gives us the partition of the dataset.

Procedures such as those proposed by Mirzasoleiman et al. (2016) can be used to

select representative elements as centres for exemplar based clustering. Clustering of

trajectories can be applied to anonymise locations traces (Zeng et al., 2017).

Subtrajectory Detection. Given the query “Is trajectory T1 ri-close to a subtrajectory

of T2?”, we first insert T1 and T2 in the MRTS if they haven’t been inserted yet. Then

we locate the sketches of T1 and T2 on layer i− 1. We compute the LCS between

these sketches, and answer yes if the sketch for T1 appears as a subsequence, and no

otherwise. To get accurate results with high probability, we can increase the number

of disks on layer i−1, and take the majority answer.

3.6 Experiments

We tested the performance of binary and ordered sketches on two real datasets. The

experiments show that:
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• there is a correlation between the proposed distance measures and Hausdorff

(strong correlation), Fréchet and DTW (Section 3.6.1);

• the correlation holds even with a small number of disks or with incomplete data

(Sections 3.6.1, 3.6.3);

• the sketches achieve high pruning ratio with good accuracy, less storage space

and better running time in nearest neighbours queries (Sections 3.6.2, 3.6.4, 3.6.5).

We ran all experiments on both the CRAWDAD dataset of taxis in Rome (Bracciale

et al., 2014) and the ECML/PKDD dataset of Taxi Trajectories in Porto (Moreira-

Matias et al., 2013).

Data preparation

The ECML/PKDD (Porto) dataset (Moreira-Matias et al., 2013) describes the mobility

of 442 taxis driving in the city of Porto (Portugal) for 1 year and is composed of 1.7

million data points. The GPS locations (latitude, longitude) are recorded every 15

seconds with mobile data terminals installed in the vehicles. Each trajectory represents

a complete taxi trip taken by a passenger. The lengths vary from 1km to 15km. We

randomly selected 1000 trajectories in a 5km×10km area of the map.

The CRAWDAD (Rome) dataset (Bracciale et al., 2014) contains the GPS locations of

320 taxi drivers working in the city centre of Rome (Italy). Each trace is for one driver

for one day at about 7 second intervals, giving roughly 22 million data points. To obtain

trajectories similar to individual trips, as in the Porto dataset, we split each trajectory

into trips, such that the length of each is at most a 3 times the distance between source

and destination. This gives trajectories with lengths roughly between 2km and 5km.

We randomly selected 1000 trajectories in a 7km×2km area of the map.

Choice of parameters

For all experiments with a fixed number of disks we picked uniformly at random 50

disks of radius 2km. In general, the choice of radius depends on the scale of the prob-

lem. Suppose we consider two 1km trajectories to be close if their distance is less than

10m. We choose enough disks to cover the map. Based on results in Section 3.4, we

want to maximise 1− 8πr2

c while 2r
c = 10m. For r = 2km, the probability 1− 8πr2

c be-
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comes 0.75, which is a lower bound for the probability that the sketches are the same

when the trajectories are less than 10m apart.

3.6.1 Correlation with Hausdorff, Fréchet and DTW

We checked how the proposed distance measures compare to Hausdorff, Fréchet and

DTW. Figures 3.3 (a), (b), (c), (e), (f) show the results for the Porto and Rome datasets.

For each pair of trajectories we compute the distance: with the binary unordered

sketches for Hausdorff and with the ordered version for Fréchet and DTW. We grouped

the possible values in 30 bins and show in the plots the median value (white line) and

the 5-95, 10-90, and 25-75 percentiles (the shaded areas). We see that the sketch dis-

tance measure bears a clear correlation to the traditional measures. For Hausdorff the

correlation is high (≈ 0.8). For Fréchet and DTW, while the correlation is lower,

there is a clear distinction between close and distant trajectories, showing the utility of

locality sensitive hashes.

3.6.1.1 Effect of radius and number of disks

This correlation naturally raises a question of how it is influenced by parameters such

as the number and radii of disks. Figure 3.4 (a) shows the effect of disk radius; each

curve corresponds to results with a fixed number of disks and a varying radius between

500m and 4km. The shaded area corresponds to the 5 to 95 percentiles based on 30

reruns. For each trial we computed the Pearson correlation coefficient between our

distance measure and Hausdorff distance.

In Figure 3.4(a) a radius size of around 2.5km achieves the maximum correlation,

beyond which the disks become less discriminatory and the correlation decreases. We

also observe that too small a radius does not perform as well – to use a smaller radius

we would need to consider more disks.

The correlation also increases with the number of disks. A higher number also assures

low variability in performance between trials. Even with a low number, such as 10,

we get a good correlation of ≈ 0.7 or more as long as the radius is in the right range

(1.5km- 3km). Beyond a certain number, increasing the number of disks does not

improve performance. For a good correlation we need to choose enough disks to get a

cover of the map, but having more disks offers a more fine grained distance measure
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Figure 3.4: (a) Correlation coefficient with Hausdorff distance depending on the disk

radius and the number of disks. Variance decreases when increasing the number of

disks.

(b) CDF of the Hausdorff distance error between true and found nearest neighbours.

With more layers the error decreases.

at the cost of greater storage and computation, as we discuss in relation to nearest

neighbours queries in Section 3.6.2.

3.6.2 Nearest neighbour search

For a variable number of disks (10, 30, 50) and fixed r = 2km, we computed the nearest

neighbour for each trajectory in the dataset using Hausdorff and Fréchet distances. To

prune the search space using our sketches we selected only those trajectories that had

sketch distance equal to 0, 1, 2 etc. We measured in what proportion of cases the true

nearest neighbour is in the remaining set (accuracy), and how large the eliminated set

is compared to the total dataset (pruning ratio). In Figure 3.5 we show how the pruning

ratio changes with accuracy.

There is little variation in the accuracy for a specific number of disks. Interestingly,

changing the number of disks does not influence the results too much for nearest neigh-

bour search with LSH; with a small number we can achieve a high pruning ratio and

high accuracy. However, a larger number of disks provides better resolution when

using the sketches as an estimate of distance.

Figures 3.5 show that accuracy can be as high as about 80% at a pruning ratio of

over 80% for both Hausdorff and Fréchet distances, even with a small number of

disks. Thus, this method allows us to restrict our attention to a small fraction of the
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Figure 3.5: The performance for nearest neighbours queries increases with the number

of disks. A small number (30) suffices.

trajectories and still obtain the correct nearest neighbour in most cases.

Multi-resolution trajectory sketches

In Figure 3.4 (b) we show how the distance error to the nearest neighbour changes with

the different number of layers in the multi-resolution sketches. We considered 1, 5, 7,

10 and 15 layers. At the first level the disks have radius r = 2km; this decreases by a

factor ε = 0.1 at each level. The number of disks at level i is given by A/r2
i log(A/r2

i ),

where ri is the radius at level i.

To find the nearest neighbours given a query trajectory we compare the sketches at ev-

ery layer, starting from the top, and only advance to the next one if the sketches match.

When we reach the last layer, the set of the remaining trajectories is searched for the

nearest neighbour. The difference in distance between the true nearest neighbour and

the one we found gives the error. Figure 3.4 shows the CDF of the error.

At the first level the number of disks is low (13). Performance increases quickly with

the number of layers. In practice, the performance can be further improved by checking

for approximate matches between sketches instead of exact matches (corresponding to

distance 0).
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3.6.3 Robustness to data loss and privacy of locations

Trajectory data can be subject to sensing errors and noise and often has missing data.

In other cases, a lower frequency of location sampling is preferred to maintain the

user’s privacy in between check-ins (Niedermayer et al., 2013). The disk distance

performs well even when large parts of the trajectories are missing. Interestingly, when

only 10% of the data points in each trajectory are retained, the disk distance is still

highly correlated with the Hausdorff distance, as can be seen in Figure 3.3 (d). In this

experiment we computed the disk distance on only a 10% sample of the location points

in each trajectory, and plotted against their true initial Hausdorff distance.

Beyond the natural robustness to unreliable sensing, this result implies efficiency of

storage and computations as only a small random sample needs to be stored for useful

comparison.

3.6.4 Time efficiency

We compared the running times of our method using pruning with Hausdorff, Fréchet

and DTW when computing distance matrices.
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Figure 3.6: Better performance in terms of running time.

In the first experiment shown in Figure 3.6 (a) we used the standard Hausdorff imple-

mentation between point sets and computed the time for sampled sets of up to 1000

trajectories. Using the Douglas-Peucker algorithm to first simplify the trajectories did

not bring a large improvement in the computation time. The time taken to compute all

pairwise sketch distances is more than 5 times faster than computing Hausdorff dis-

tance for 1000 trajectories. This also includes the preprocessing time of picking the

disks and computing the sketches.
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For the second experiment in Figure 3.6 (b) we computed Fréchet and DTW distances

efficiently with Python libraries. The results show that the sketch distance computation

is 2 times faster than Fréchet for 1000 trajectories when using 50 disks - enough to get

a 90% accuracy for nearest neighbours search with 80% pruning ratio, as can be seen

in Figure 3.5.

3.6.5 Comparison with existing LSH method

We compared the performance of the ordered sketches with the grid-based sketches

proposed by Driemel and Silvestri (2017). From the LSH scheme they propose, the

basic one has an approximation factor linear in the number of vertices that a trajectory

has, similarly to our proposed scheme. In their work the hashes are constructed in the

following way:

• consider a grid that covers all trajectories;

• each vertex in the trajectory is replaced by the closest node in the grid;

• from the resulting sequence of nodes the consecutive duplicates are removed.

For a particular grid, this results in a hash function whose image is a subset of se-

quences of nodes from the grid. The family of hash functions is constructed by con-

sidering shifted versions of the grid, parametrized by a random variable that is at most

the size of the grid in any dimension.

The work does not explicitly discuss the choice of grid size in a practical setting;

therefore, in experiments we considered various sizes of grids, ranging from 100m to

15km. We use the same values as diameters of disks for our scheme. The set of sizes

includes a much larger range of values than the ones that are optimal for our proposed

scheme for the dataset in use (the optimal range is between 1km and 4km according

to Figure 3.4 (a)). For each size s we built a grid that covers the map, where the

distance between any two neighbouring nodes is equal to s. We denote the number of

resulting nodes by ngrid. To compare with our proposed method, we consider ngrid/2

disks of diameter s (in ordered sketches we note both the entrance inside a disk and

the exit). Notice that we are using the ordered sketches (not the fixed size binary

sketches) because the grid approach gives a LSH scheme for Fréchet . Both alphabets

for constructing the hashes are composed of ngrid elements; the size of the hashes

themselves depends on the length of the trajectory - this could in theory be as large
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as the number of vertices in the trajectory in both cases. Two grid hash functions are

equal if the sequences are the same. Two ordered sketches are considered the same if

the edit distance is at most 2.

In each experiment we consider a grid of size s with ngrid nodes and a set of ngrid/2

disks of diameter s. Based on these values, the grid and disk hashes are computed for

each trajectory. If the hash values of two trajectories are equal according to the corre-

sponding scheme, then they are kept as possible nearest neighbours. Given a certain

trajectory, we count how many trajectories have the same hash; the size of this set gives

the pruning ration. The number of instances when the true nearest neighbour is in this

set gives us the accuracy. Figure 4.9 (a) shows the results comparing the performance

in terms of pruning ratio and accuracy. The two methods perform approximately the

same with slightly better results for the disks version: for 90% accuracy, the pruning

ratio is close to 0.8. However, in terms of size we notice a significant improvement.

For each experiment and each trajectory we compare the length of the hashes for the

two schemes. In Figure 4.9 we notice that almost all trajectories have a disk hash

shorter than the grid hash and often the size is twice as small, reaching even a frac-

tion of less than 0.25. This can partly be explained by the fact that in the case of grid

hashes each vertex of a trajectory has a correspondent in the grid (unless repeated); for

the disk hashes a trajectory could travel inside a disk without exiting or intersecting

other disks, therefore without adding another element to the hash.

(a) (b)

Figure 3.7: Better performance in terms of (a) accuracy and (b) storage size.
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3.7 Conclusion

We presented a randomised sketching scheme to compactly represent trajectories, and

established its effectiveness in both theory and practice of trajectory processing. The

theoretical results give practical guarantees and the experimental results show the

applicability of the scheme to real-world scenarios. Such scenarios include analy-

sis of spatial trajectories in player performance (Gudmundsson and Horton, 2017) or

ridesharing matching (Shang et al., 2014). Planar networks and trajectories are com-

mon in robotics, biological systems, seismology and many other domains, where appli-

cations of the scheme can be useful in reducing the computation time in clustering and

similarity search. Adaptation of the randomised scheme in higher dimension has inter-

esting applications, for example in recommender systems, when searching for nearest

neighbours for high-dimensional feature vectors. Another interesting direction is to

verify if similar theoretical guarantees hold for other distances, such as DTW.



Chapter 4

Demand driven transit network design

with constraints:

case study on bicycle lanes planning

4.1 Introduction

As a response to increased traffic congestion and the need to reduce carbon emissions,

cities consider ways to modernise, build and extend transit systems. Transit network

design solutions can benefit from analysing the large amount of crowd-sourced loca-

tion data available, which provides valuable insights into population mobility needs.

Designing efficient metro lines, bicycle paths, or bus routes brings a number of con-

flicting constraints into play: from the user’s perspective, an efficient transit network is

easily accessible and time-efficient, while from the provider’s side there is a limitation

on the budget, amongst others. Methodologically, the transit network design problem

is complex. As described by Newell (1979) in a seminal work, it is a non-convex

optimisation problem and large scale solutions are often based on heuristics.

A common approach in data driven transit network design is to cluster trajectories,

which are ordered sets of GPS locations (latitude and longitude) from people travel-

ling in an urban setting. This task is by itself difficult because of the size, complexity

and diversity of trajectories. Clustering algorithms often take into account the similar-

ity between trajectories (Evans et al., 2012; Jiang et al., 2016). Explicitly computing

distances between long sequences of locations is expensive; while there exist linear

45
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and near-linear time approximations for distances in the plane, such as Hausdorff or

Fréchet (Driemel et al., 2012; Taha and Hanbury, 2015; Astefanoaei et al., 2018), the

number of pairwise computations is prohibitively large. Expensive computations can

be avoided by considering only the origins and destinations of trajectories, in this way

abstracting from their geometry. The literature on clustering origin-destination pairs is

extensive; often the goal is to find trips whose starting and ending locations are similar.

We notice that, in the context of transit network design, it is useful to group trips that

follow a similar direction, but are not necessarily geographically close. For example, a

bus route would not only serve the travellers who enter and exit at the start and end of

the route, but a larger number of people along the way. Other types of clustering algo-

rithms identify popular segments in a road network (Jiang et al., 2016); in the context

of cycling mobility, these segments could be candidates for bicycle lanes construction.

Since popular roads tend to concentrate in the centre of a city, designing a transit net-

work based on popular paths can result in inefficient coverage. For these reasons we

consider a more broad definition of clusters that avoids expensive trajectory similarity

computation, allows grouping trips that do not necessarily share nearby origin and des-

tination locations and offers a more broad coverage than popular segments. Based on

these clusters we identify paths that are the base of the transit network and then further

modify the network to fit the constraints. We use a cycling network as a case study.

Our contributions. Given the GPS locations of origins and destinations of user trips,

our proposed algorithm finds a transit network of bounded total cost such that every

covered pair of locations is within a given distance from the network and the route

through the new transit network is not much longer than the shortest route through the

initial road network. We formulate the problem in terms of building a network of cycle

lanes and prove that it is NP-hard.

The heuristic algorithm we propose has three stages:

1. Multi resolution local clustering of the trips that can be served by the same path;

2. Global merging of the discovered clusters into a network of paths;

3. Network simplification based on the given cost constraints.

The first and third stage of the algorithm are both NP-hard. Geometrically, the pro-

posed clustering task is similar to covering segments in the plane with rectangles of

fixed width. This is equivalent to geometric set coverage, a classical problem that is

known to be NP-hard, but has a log(n) greedy approximation scheme, which is the
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best-possible approximation unless P = NP (Feige, 1998). We propose a fast heuristic

algorithm for the coverage problem that takes into account given design constraints

and that is the base of our transit network construction scheme. For the network sim-

plification stage we propose three greedy strategies and show that even the simplest

one, which has running time linear with the number of edges in the network, gives

good results in practice.

We ran experiments on the London street network and the Santander Cycle hire data.

In one experiment we show that only a small sample of 500 trips is enough to build

a network that covers approximately 60% of 5000 unseen trips. In other experiments

we compare the coverage ratio of a proposed network of paths generated with our

algorithm with the Cycleways bicycle paths existing network. The comparisons show

that the number of covered trips is approximately 20% more when compared with a

real network of the same size, using the most basic simplification strategy.

The remainder of this chapter is organised as follows. In Section 4.2 we summarised

related works. In Section 4.3 we formulate the bike lane problem and show that it is

NP-hard. In Section 4.4 we describe the proposed algorithm and illustrate it with an

example. Section 4.5 presents the data, experimental set-up and results.

4.2 Related work

Designing a transit network is a complex task involving the interplay of geographi-

cal, economical and social factors. It is often modelled as a non-linear multi-objective

problem that cannot be solved without abstracting from some of the factors and im-

posing major simplifications. In the literature, when the transit network design prob-

lem is formulated as an optimisation problem, the usual quantities of interest are: trip

coverage, population coverage, costs, trip length (in either time or distance), number

of allowed routes (Newell, 1979; Petrelli, 2004). Any of these quantities can be ei-

ther optimised or constrained, which leads to the large array of intrinsically different

problems. Maximising the trip coverage requires data related to population mobility,

while optimising population coverage requires information about important locations,

such as hospitals, universities and so on. Moreover, depending on the type of transit

network, further constraints can be added such as network topology, number of sta-

tions and their placement (for bus, metro and rail networks, e.g. Laporte and Pascoal
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(2015)), or continuity and connectivity (for cycling paths, e.g. Bao et al. (2017)).

The solutions to the network design problem are split into analytical (Wirasinghe,

1980), mathematical programming (Ceder and Israeli, 1998) and heuristic (Pinelli

et al., 2016). Exact analytical or mathematical programming solutions are proposed

in the case when the road network is reduced to a smaller graph, based on prior knowl-

edge or constraints such as network topology (for example when designing a metro

system and the shape is known (Laporte and Pascoal, 2015; Laporte et al., 2011)). A

number of heuristic solutions do not have such constraints, but are not designed for

a large-scale, street-level context. The work of Pinelli et al. (2016) proposes a data-

driven transit network design algorithm based on Call Detail Records (CDR) data,

which means the resolution of the solution is at the level of cell tower locations. Maut-

tone et al. (2017) build a multi-commodity network flow mixed-integer mathematical

program for solving a similar problem, but the experiments show that it is not scalable

to a large network.

A different formulation for the transit network design problem is finding k primary

corridors given a set of GPS trajectories. The aim is to find k paths in a road network,

such that: either the distance to the initial dataset of GPS trajectories is minimised

(Jiang et al., 2016), or the intra-cluster pairwise distances are minimised (Evans et al.,

2012) . Other works take into account budget limitations and continuity constraints

(Yu et al., 2018). However, these works consider whole trajectories, which is com-

putationally expensive. In designing routes that are accessible and useful to a large

number of users, we are more interested in the origins and destinations of their trips,

rather than the actual trajectory they choose to take. Generally, there is a large number

of paths with similar lengths in a road network; there is evidence that people change

their travel behaviour based on the available resources (Verplanken and Roy, 2016).

Clustering origin destination pairs is used in aggregating and mapping mobility flow

patterns. Zhu and Guo (2014) developed a hierarchical clustering method based on the

nearest neighbours of the origins and destinations. They propose a scalable algorithm

to group trips that have similar origins and similar destinations. Kumar et al. (2016)

use density based clustering algorithms such as DBSCAN for all the data points to

identify hotspots and then extract the valid trip clusters. These and a larger number of

works on origin destination pairs place the problem in the Euclidean space rather than

a road network, which would be more informative when designing a transit network.

Moreover, clustering is often understood as grouping trips with geographically close
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endpoints. Thinking in the context of building a system of cycling paths, we notice

that this type of clustering is not necessarily the most insightful - cyclists can enter and

leave at any point along the path. These works also do not consider the geographical

spread of clusters (in terms of length and width), which is relevant because paths should

be easily accessible - in a wide cluster locations at the extremity of the cluster are far

away from the median.

In contrast to the above, this work considers a fast, scalable method for clustering

origin destination pairs. We take into account the entire road network and real user

trips.

4.3 Bike path problem description

Suppose we are given a set of user trips defined by the locations of the departure

(origin) and destination and the task is to find paths in the road network that the users

can follow to arrive to their destination under certain constraints. We describe the

Demand Driven Network Generation (DNG) algorithm in terms of designing a network

of bike paths. A similar approach can be applied to other types of transportation (such

as buses or trains).

In designing an efficient transit network, we consider a series of physical metrics that

capture the system’s performance. As identified by Daganzo (2010); Estrada et al.

(2011); Lee (2012) and others, these metrics relate to user and agency costs. User

costs are a function of the time spent in the transit network, which can be split into

waiting time (to access the network and the means of transport) and in-vehicle time.

In this work we look at the spatial component of designing a transit network; speed

and frequency of vehicles depend on the application. Therefore, we adapt the user

costs to take into account distance rather than time. In the context of building bikes

paths, we measure how accessible the network is to users, so the distance from the user

starting and end points to the closest paths. From the user perspective, Lee (2012);

Ceder (2001) propose to measure how competitive a transit network is by computing

the ratio between a function of the distance through the transit network and the distance

through the road network otherwise, usually the length of the shortest path between the

origin and destination of the trip. We use the same idea in defining a constraint on the

maximum stretch of a user path. In terms of agency costs, the relevant metric for the
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spatial transit network is the infrastructure length.

Our objective is to maximise the number of users who can use the paths efficiently,

given constraints related to the above metrics: the origin and destination locations of

their trip are close to the bike paths, the trip through the paths are not much longer than

the trip through the road network, the path construction budget is limited. Therefore,

in designing the network we define the following constraints:

• construction constraint - there is a cost associated with building a bike path on

each road segment; this depends on the properties of the road, but for the mo-

ment, for simplicity, we assume that the cost is the length of the segment (other

costs could include the actual construction cost or the level of traffic congestion);

therefore we limit the total length (total cost) of paths to be built to T ;

• transit distance constraint - the bike paths should be close to the origin and

destination of a trip; we allow transitions between the origin-destination loca-

tions and the bike paths as long as the Euclidean distance is not longer than a

fixed constant dt ;

• total distance constraint - for each trip, the route following the bike paths

should not be much longer than the shortest route through the road network;

we fix the stretch factor of the path to a constant s.

Given the above constraints, let us describe the setting for the bike path problem.

Let S be a set of origin-destination pairs of latitude-longitude coordinates defined as

S = {((latoi, lonoi),(latdi, londi)), i = 1, . . . ,n}, where n is the number of trips, and

G= (V,E) a road network, where the vertex set V is the set of intersections with known

coordinates and the edge set E is the set of road segments. The bike path problem is to

find a subgraph G′ of G such that the total length (cost) of the road segments is below

a threshold T and the number of (G′,dt ,s)-covered trips is maximised.

Definition 15 ((G′,dt ,s)-covered). We say a trip is (G′,dt ,s)-covered if the endpoints

are within distance dt to the road network G′ and the shortest path distance through

the network has a stretch of at most s.

Definition 16 (Stretch factor). We say the stretch factor of a path p is s if it is at most

s times longer than the shortest path between the same nodes.

The stretch factor is commonly used on graphs to measure how much distances are

distorted after a transformation. As in the areas of geometric spanners and weighted
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graphs that approximate Euclidean distances, we are interested in finding a subgraph

of the road network such that distances between points (in our case origins and desti-

nations) are minimally distorted.

For any path p in G, we say that a trip is covered by p if it is (Gp,dt ,s)−covered by

the subgraph Gp induced by the path p in the network. Note that some trips can be

partially covered, but we do not consider them as contributing to the final set.

With the notations from Table 4.1, the bike path problem is formally defined as:

Bike path problem. Given S, G(V,E), dt , s, T , find a subgraph G′⊂G with L(G′)< T

such that the size of the set C = {x ∈ S|x is (G′,dt ,s)− covered} is maximal.

Notation Description

S origin-destination pairs

G(V,E) road network

dt transit distance

s road network route stretch

T threshold on total length (cost)

L(G′) total length (cost) of edges in G′

C the set of covered trips

Table 4.1: Table of notations

We show that the bike path problem described above is NP-hard, as it can be reduced

from the Knapsack problem (Mathews, 1896).

Theorem 4. The bike path problem is NP-hard.

Proof. Suppose that the transition distance dt is 0 (which is equivalent to all trips

having endpoints in the network) and that each trip can be covered by exactly one

edge. Then, for each edge there is an associated set of trips that is covered; this gives

the utility of the edge. The cost is a function of the length, in this case the length itself.

Then the bike path problem is equivalent to finding the set of edges that maximises

the total utility (total number of trips covered) given the constraint on the cost (the

total length of the edges is less than T ). This is exactly the 0-1 Knapsack problem

(Mathews, 1896), known to be NP-hard (Karp, 1972).

Given the above result, we propose a heuristic algorithm that we describe in the follow-

ing section. In the Experiments section we show how the generated network compares
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to the bike routes network in London.

4.4 Demand driven network generation (DNG) algorithm

To better understand how the origin destination trips are distributed geographically we

abstract from the network itself and first consider the problem in the Euclidean space,

where the trips are simply line segments between the origin and the destination. We

cluster the segments based on geometric properties and then combine the medians of

the clusters to create a network of paths. This network is simplified such that the

total cost is below the given threshold. Therefore, the algorithm we propose has three

stages:

1. Multi-resolution local clustering. The trips that can be served by the same

paths in the network are grouped together.

2. Global merging. The clusters are merged to create a network of paths.

3. Network simplification. The edges are scored based on a measure of utility.

Those with low scores are removed to reach the construction constraint.

The algorithm is flexible in terms of efficiency constraints; the parameters can be fixed

according to the available resources and desired accuracy. We give more details about

the three stages in the next section, followed by an example that illustrates all the steps.

Implementation details are given in the Experiments section.

4.4.1 Multi-resolution local clustering

In the first stage we group trips that are likely to be served by the same path. These are

trips that are either geographically close, or that follow a similar trajectory.

For now we disregard the road network and the stretch factor constraint. We work in

the Euclidean space, where the origin-destination pairs are segments and the paths we

design are polygonal chains. The trips that are covered by a path are at distance at

most dt from the path, measured at both endpoints. Suppose the rectangle in Figure

4.1 has width 2dt and length L, the maximum length of any segment in the map. The

trips covered by the rectangle can all be served by the median (the red line), because

all endpoints are at distance at most dt . Notice that the segments do not have to be
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close to each other; the path covers even trips that have do not pass through the same

regions.

Figure 4.1: Rectangle of width 2dt covering segments with endpoints in distinct areas.

Clustering the trips becomes then a problem of covering all segments with rectangles

of width 2dt and length L, while minimising the number of rectangles (see Figure 4.2).

We call this the rectangle coverage problem and prove that it is NP-hard.

(a) A set of trips (b) Covering rectangles (c) The medians

Figure 4.2: A suboptimal solution to the rectangle coverage problem. The optimal solu-

tion would cover the 2 leftmost segments with one rectangle. The medians (Figure (c))

are used to build the road network.

Definition 17. The rectangle coverage problem is defined as the problem of finding

the minimum number of rectangles of width 2dt and length L (the maximum length of

the segments) with arbitrary orientations, that can cover a given set of segments.

Theorem 5. The rectangle coverage problem is NP-hard.

Proof. Suppose all segments have length 0, so they are points in the 2D plane. The

rectangles can have any orientation, therefore the problem is equivalent to covering the

points with disks of a fixed radius. The discrete unit disk cover problem is NP-hard, as

it is a geometric version of the set cover problem (Das et al., 2011).

For the general set cover problem, the greedy algorithm gives a O(logn) approxima-

tion, tight to a constant factor, where n is the maximum between the number of points

and the number of sets. In the geometric case, special attention has been given to the

discrete unit disk cover (DUDC) problem, namely covering all points in the space with

the minimum number of unit size disks. DUDC has better approximation schemes

than the general set cover problem, because it takes advantage of geometric proper-

ties. Mustafa and Ray (2010) propose a local search algorithm that gives a PTAS
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(Polynomial Time Approximation Scheme) and later Agarwal and Pan (2014) give a

nearly-linear time approximation scheme for DUDC. Other works look at the problem

of covering segments (as opposed to points) with disks (Basappa, 2018) or axis-aligned

squares (Acharyya et al., 2019). However, the proposed schemes implement complex

data structures that have prohibitively large constants in the running time (Bus et al.,

2018, 2017). Moreover, it is unclear how and if the same schemes can be adapted to

the problem of covering segments with rectangles with arbitrary orientations.

We propose a greedy algorithm for the rectangle cover problem with three subroutines

for choosing the maximum coverage rectangle at each iteration: a O(n4)-time exact

solution, a O(n2 log(n))-time heuristic and a O(n2)-time heuristic. For the following

results we assume that any given segment has length at least 2dt (the total allowed

walking distance to and from a path).

4.4.1.1 Greedy coverage

The greedy solution we propose for the rectangle coverage problem is to iteratively find

the rectangle that covers the maximum number of segments. Let L be the maximum

length of a line segment on the bounded area of the map. Assuming that each rectangle

has a maximum length L, we cover all segments with rectangles of dimension L×2dt .

We discuss the exact and heuristic algorithm for maximum coverage with rectangles

of arbitrary orientations.

O(n4) algorithm for finding the maximum coverage rectangle

We show that the maximum coverage rectangle can be found by checking every L×2dt

rectangle that intersects a triplet of non-collinear points from the set of endpoints of

the segments (with no differentiation between origin and destination locations). We say

that a rectangle intersects a set of points if the points are on the sides of the rectangle.

Any rectangle covering a set of points that does not intersect a triplet of points can be

translated so that it intersects a triplet, and still covers the set, as proved in Theorem 6.

Lemma 6 shows that the set of points the new rectangle covers is at least as large as the

previous set. Therefore, the maximum coverage rectangle can be found by checking

each triplet of points induced rectangle, which gives a O(n4) algorithm, proved in

Theorem 7.
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Theorem 6. Let H be the convex hull of a given set of segments with at least 3 non-

collinear points. Suppose there exists a L×2dt rectangle R that covers H. Then there

exists a L×2dt rectangle R ′ that intersects H in 3 points not all on the same side.

Proof. Consider any rectangle R of size L×2dt that covers H and let A,B,C,D be the

left/top/right/down-most vertices of H in the directions given by the sides of R , as in

Figure 4.3.

(a) (b)

Figure 4.3: (a) The convex hull H and an enclosing rectangle R of size L× 2dt . (b)

dMQBD is the length of the projection of BD on MQ; dPQAC similarly defined.

Let dPQAC be the distance between the projections of A and C on PQ and similarly

define dMQBD (see Figure 4.3 (b)). If either dPQAC = L or dMQBD = 2dt , then R can

be translated to intersect 3 of A,B,C,D (top-down for dPQAC = L and right-left for

dMQBD = 2dt).

Consider the case when dPQAC < L and dMQBD < 2dt . Translate R until it intersects

A and B, as in Figure 4.4 (a). Denote by A′ and B′ the vertices to the right of A and B

and θ1 and θ2 the angles that AA′ and BB′ make with the rectangle; suppose θ1 < θ2.

Then we can rotate R until it intersects A′, keeping A and B on R and maintaining the

covering property. See Fig. 4.4.

After the translation and rotation, R intersects H at A,A′,B which are 3 vertices of the

convex hull with 2 on adjacent sides of R .

Lemma 6. By translating and/or rotating a rectangle covering a set of points as in the

Theorem 6, the new rectangle will cover at least as many points as before.
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(a) (b)

Figure 4.4: (a)R is first translated to intersect the convex hull H at A and B. (b) Then it

is rotated to intersect A′, the vertex to the right of A.

Proof. By the translation and rotation operations from Theorem 6 the convex hull of

the set of points remains covered. Therefore there are at least as many segments that

are now covered.

Theorem 7. Any maximum coverage rectangle can be moved so that it intersects 3 of

the points it covers.

Proof. Suppose a maximum coverage rectangle intersects 0, 1, or 2 of the endpoints of

the segments it covers, but not 3. In Theorem 6 we show how to translate this rectangle

such that the set of points is still covered and it intersects 3 points. By Lemma 6 the

new set of points is at least as large as before. Therefore, the rectangle is still the

maximum coverage rectangle.

By Theorem 7, to find the maximum coverage rectangle of a set of points it is enough

to check the rectangles given by every combination of 3 points. Next we show that

the number of rectangles we need to consider is constant in the number of triplets of

points.

Lemma 7. Let A,B,C be 3 points. If the points are non-collinear and dABC,dBCA,dACB /∈
{L,2dt} there is at most 1 rectangle of size L×2dt that intersects the points. Otherwise,

any rectangle intersecting the points is valid.

Proof. In the first case, if there is a rectangle that intersects all of A,B,C then either

the 3 points are each on one side of the rectangle, or 2 on one side and 1 on the other

(otherwise they would have to be collinear). If the points are each on a different side,
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then there is no rotation or translation that we can do to the rectangle. If they are on 2

sides, they would have to be on adjacent sides, otherwise the condition on distances is

not valid. Again, no rotation or translation would be possible.

In the second case, there are possibly infinitely many rectangles intersecting the points.

Suppose not all of them cover the same number of points and consider the one that

covers the most. If all the points are collinear, this rectangle will be found when the

2 extreme points will be part of a triplet. Otherwise, it will be found when any 3

non-collinear points of the convex hull will be considered as the triplet.

Theorem 8. Let S be a set of n segments. The maximum coverage rectangle of size

L×2dt can be found in O(n4).

Proof. Let P be the set of endpoints of segments in S. Take every combination of 3

points from P and for each of them find the L× 2dt rectangle that intersects them,

if any. Count the number of segments it covers in O(n). One of the rectangles will

coincide with the maximum coverage rectangle. Since the number of rectangles is at

most 1 and the number of point triplets is
(2n

3

)
, then the algorithm runs in O(n4).

Lemma 8. The greedy algorithm choosing the maximum coverage rectangle at each

step runs in O(n5).

Proof. In the worst case each rectangle covers 1 segment, so the maximum coverage

rectangle algorithm would have to be ran O(n) times, giving the O(n5) running time.

Similarly to the set cover problem, the greedy algorithm above gives a log(n) approxi-

mation.

O(n2 log(n)) algorithm for finding the maximum coverage rectangle

We propose a O(n2 log(n)) algorithm to find a rectangle that covers the maximum

number of points with rectangles of width 2dt . The algorithm works by projecting

segments onto lines and finding the intervals that contain the most projections. We call

these intervals projection windows, defined below.

Definition 18 (Projection window). Given a set of segments S and a line ` we define

the projection window as the shortest segment on the line that contains the projections

of all segments from S onto ` (see Figure 4.5).
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Figure 4.5: The grey segment is the projection window of segments s1,s2 on line `.

The algorithm chooses the projection window that contains the most projections.

Lemma 9. If a set S of segments can be covered by a L× 2dt rectangle, then there

exists a line ` such that the length of the projection window is at most 2dt .

Taking a line perpendicular to the median of the rectangle gives the result. We also

observe that the shortest projection window is given by the line perpendicular to the

narrowest rectangle that can cover the segments. Now let us consider lines that are not

perpendicular to the rectangles.

Lemma 10. Suppose a set of segments S can be covered by a L×2dt rectangle. For any

such rectangle and any line ` that makes an angle of at most α with the perpendicular

on the rectangle, the length of the projection window is at most Lsinα+2dt cosα (see

Figure 4.6).

Proof. The longest projection window is obtained when the endpoints of the segments

are on the sides of the rectangle. Suppose there are only 2 segments of length L that

are 2dt apart as in Figure 4.6. The result follows from trigonometrical calculations.

Figure 4.6: The line makes an angle α with the rectangle.

Suppose we are in the worst case where there are n segments of length L (the maximum

length of a route) split in 2 clusters of overlapping segments at distance 2dt from each
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other. Only a line that is perpendicular to the n segments can discover that they all fit

in a tube of width 2dt . If there is a line at angle at most α from the perpendicular, then

we would need a window of length Lsinα+2dt cosα, to discover this cluster (when α

goes to 0, the length goes to 2dt). Suppose we allow an error δ in the width of the tube.

Making δ = Lsinα+ 2dt cosα− 2dt , means we can choose the lines to be at angle at

least α from each other and all the clusters will fit in a tube of width at most 2dt +δ.

Lemma 11. Given a set of n points, checking if there exists a L× 2dt rectangle that

covers them can be done in O(n log(n)).

Proof. Similarly to Theorem 6, we consider the convex hull of the points and a rect-

angle L×2dt that intersects at least 3 of the vertices - an edge and its antipodal vertex.

We can check if all the points are covered by the rectangle in constant time. We keep

rotating the rectangle such that each edge is on a side of the rectangle. If none of the

rotations gives a full coverage, then there exists no covering rectangle. Since there are

at most n edges of the convex hull, and it takes O(n log(n)) to build the convex hull,

the total running time is O(n log(n)).

For each 2dt + δ window we check if any of the sets they cover can fit in a L× 2dt

rectangle. Based on the previous results, we propose the following greedy algorithm

for finding a set of rectangles that covers the maximum number of segments:

1. Consider m lines centred at the middle of the the set of segments at angle α =

360°/2m from each other. Compute δ = Lsinα+2dt cosα−2dt .

2. Project all segments on the m lines.

3. For each line consider the windows of length 2dt + δ starting from every pro-

jected point.

4. For each window find the set of segments that can fit in a rectangle of width 2dt .

This will give the coverage count for each window.

5. Find the window with the most covered segments.

To illustrate the algorithm consider the set of segments in Fig.4.7a and the 2 perpen-

dicular lines. In Figure 4.7b(b) we see all the intervals of length 2dt +δ starting from

every projected point on the horizontal line. The grey cluster is the one that covers the

maximum number of pairs. The pink and blue segments belong to one cluster and the

green segment makes a separate cluster.
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(a) (b)

Figure 4.7: An example for 2 lines and 3 segments

O(n2) algorithm for finding the maximum coverage rectangle

In practice, to speed up the implementation, we ignore the δ error and consider only

projection windows of length 2dt . In this way, it is no longer necessary to check

whether the segments corresponding to the projection window fit in a L×2dt rectangle.

This gives a O(n2)-time heuristic algorithm. The medians of the clusters will then be

matched to the road network, by finding the shortest path between the nodes closest to

the endpoints.

Because of the δ error, the approximation ratio for the greedy set coverage problem,

is slightly worse than log(n) in our case. The error in approximation depends on the

number of projection lines chosen and the rectangles length L (dt given). We discuss

how the error can be minimised in the next section. Before that, we give details about

solving the rectangle coverage problem in the road network.

We give an alternative algorithm that works directly on the road network, as opposed to

clustering trips in the Euclidean space. As before, G = (V,E) is the road network and

S the set of pairs of origin-destination locations. For each location we find the closest

node in the network. Let Vs be the set of pairs of nodes in the graph corresponding to

the set of trips. We first define dt−neighbourhood.

Definition 19 (dt−neighbourhood). Given a path in a graph, the dt−neighbourhood

is the set of nodes such that the distance from any node to the path is within a distance

dt .

Suppose we know the shortest paths between any 2 nodes in G. If some pairs have
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multiple shortest paths, then the nodes can be perturbed slightly so that there will be

only one shortest path. Alternatively, other metrics (time of travel between the two

nodes, congestion, number of turns etc.) can be used as a tie breaker. For each shortest

path we calculate its dt−neighbourhood and count the number of trips it covers. Then

we greedily pick the neighbourhood that covers the highest numbers of trips.

This algorithm eliminates the errors coming from matching the medians of the clusters

to the road networks. However, in practice and in our experiments, the O(n2) algorithm

involving projections on lines gives good results and is much faster. To make the

transition to the road network, for each rectangle in the plane we consider its median

and the nodes in the network that are closest to the median. The shortest path between

the nodes is the path corresponding to the rectangle. In a large graph this may have

the issue that long shortest paths have a much larger length in the graph than in the

plane. To circumvent this and other issues we introduce multi-resolution clustering,

described in the next section.

4.4.1.2 Multi-resolution clustering

The previous section describes an algorithm for covering segments with rectangles

of width 2dt , but with no bound on the length, other than the one imposed by the

boundaries of the map. This brings a few issues:

• longer rectangles will contain the most trips, but will not necessarily find the

dense clusters of trips;

• longer rectangles might have empty portions where a path is not necessary;

• projecting long rectangles on the lines gives a larger error;

• when transitioning to the road network, long paths will have a large distortion.

Our proposed solution to these issues is a multi-resolution framework. We split the

trips based on a grid and perform the projection algorithm in each of the cells of the

grid. We then consider translations of the grid and grids with larger cells until all trips

are covered. For every grid we merge the clusters and add them to the existing network,

as we describe in the next section.
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4.4.2 Global merging

All trips that were covered so far belonged to a cluster and were served by one par-

ticular path, corresponding to the rectangle they were covered by. Other trips can be

covered by a combination of paths, as long as the length respects the total distance

constraint.

After considering the grid with the smallest resolution, a group of clusters emerges

with their corresponding paths. The paths are connected if they intersect. All newly

covered trips are removed from the set and the process repeated for translated and

larger grids until there are no more trips to cover. With each grid we update the routing

network. Once the final routing network is obtained, we match it to the actual road

network, by considering shortest paths between the nodes closest to the endpoints of

an edge.

4.4.3 Network simplification

When the generated network does not respect the construction constraint (has a total

edge cost above T ) a subset of the edges is removed. We propose a greedy strategy to

remove edges based on their cost and utility. Let us first define two measures of utility.

Definition 20 (Restricted edge betweenness centrality). Let ut ,vt be the nodes in the

network that are closest to the endpoints of a trip t. We denote by PS the set of all

shortest paths for all trips in set S. Let e be an edge of any path in PS. The restricted

edge betweenness centrality of e is the number of shortest paths from Ps that an edge

is part of.

Note that this is different than the usual definition for edge betweenness centrality

because it does not consider the shortest paths between any pair of nodes, but only for

a restricted set (given by the trips).

Definition 21 (Edge importance). Let ut ,vt be the nodes in the network that are closest

to the endpoints of a trip t. We denote by PS the set of all shortest paths for all trips in

set S. Let e be an edge of any path in PS. The edge importance for e is the number of

trips that can no longer be satisfied if it is removed.

We use either measure of utility of an edge to compute its score, defined below.

Definition 22 (Edge score). Let e be an edge in the road network with utility ue and

cost ce. The score of edge e is ue
ce

.
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In the definition of the edge score the utility is given by either measure of importance

(restricted edge betweenness centrality or the edge importance). The cost of an edge

can be chosen to be the length of the edge or simply 1, in the case when the score

is given only by the utility of the edge. The greedy strategy is to remove edges with

the lowest score until the construction constraint is met. An alternative solution is

to consider this as an inverse knapsack problem and solve using one of the known

pseudo-polynomial time algorithms (Andonov et al., 2000).

4.4.4 Network expansion

Consider the case when there exists a transit network in place and the task is to find the

next edges to be added to the network to maximise coverage. First, the trips already

covered are removed. Then at each iteration (for each grid), after discovering the

clusters, the network paths corresponding to their medians are added to the existing

network. The covered trips are eliminated from the working set and we continue with

the next iteration.

4.4.5 DNG algorithm illustrated

To illustrate how the DNG algorithm works we considered a subset of 200 origin des-

tination trips made with the Santander Cycles hire scheme bicycles (Figure 4.8). The

area occupied by the trips is approximately 9km×15km. We chose the transit distance

to be dt = 750m and the stretch factor 1.5. This means that a trip is covered if both the

origin and destination are at least 750m from a path and if the length of the route using

the path is at most 1.5 times the length of the route through the street network.

Split trips by grid. The first step is to generate grids and separate the segments in the

corresponding cells (Figure 4.9). In this example we chose only one grid with cells

of size half the size of the map. For simplicity we do not consider translations here.

Any segment that is not covered in an iteration of the algorithm is considered in the

following iterations, in larger grids (or, as in this case, in the whole map).

Project trips onto lines. In each cell we project the corresponding segments on 20

equally spaced, concentric lines (Figure 4.10). On every line we count the number

of projected points in each interval of length 2dt = 1.5km. All segments that have the

projections in one such interval can be covered by a rectangle of width 2dt . This allows
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Figure 4.8: A subset of 200 bike trips in the centre of London.

Figure 4.9: The grid on the left corresponds to the first iteration of the algorithm. On the

right there are all remaining segments that were not covered in the first iteration.

us to find covering rectangles in which the median is never further than dt = 750m from

any origin or destination. In terms of cycling paths, this means that any user wanting

to use a route (the median) will have to ride for at most dt on a path that is not a cycling

route.

Find the densest clusters. In each grid cell we iteratively pick the intervals of length
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(a) (b)

Figure 4.10: (a) 20 projection lines centred at the centre in every cell where there is at

least one segment. (b) The projections of every segment in the cell on the projection

lines.

2dt that contain the most projection points (in this example at least 6 projection points

- we choose rectangles that cover at least 3 trips). For every such interval we build the

covering rectangle, with the median crossing through the middle of the interval.

Figure 4.11: The covering rectangles chosen by the greedy approach.



66 Chapter 4. Demand driven transit network design

Build routing graph. We build a planar graph using the medians as edges. The nodes

are the endpoints of the medians and every intersection of medians (Figure 4.12). A set

of trips is fully covered by the rectangles discovered in the previous step. Other trips

can be covered by considering transitions between paths. We verify the total distance

constraint (stretch factor of any path should be at most s = 1.5) for all trips, in or

outside the grid considered at this iteration. We repeat the previous steps for the next

grid with all trips that were not covered which will give a set of rectangles and their

corresponding medians. We update the graph with the new edges.

Figure 4.12: The routing graph after the first (left) and second (right) iteration.

Match the routing graph with the road network. Once the routing graph is finalised,

we find the corresponding nodes and edges in the complete road network. For every

edge in the routing graph we identify the nearest nodes in the road network; the edge

is then represented by the shortest path between the nodes (Figure 4.13). Due to the

graph metric not being the same as the Euclidean distance, a subset of trips will not

be covered in the matched network, while another subset will. To avoid this we can

directly match every edge found in the previous step to the road network. In this

way the routing graph is always a subgraph of the road network and the intermediate

subsets of covered trips are included in the final set. However, in experiments we

notice a negligible difference between the two approaches, therefore we use the first

approach for simplicity.

Simplify network. If the total edge length of the matched network is larger than the

allowed length, we remove edges iteratively, according to the strategies presented in
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(a) London road network

(b) Transit network

(c) Simplified transit network

Figure 4.13: London road network and the networks found with the DNG algorithm.
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Section 4.4.3. Here we used the simplest strategy, based on the edge betweenness

centrality (the number of shortest paths passing through every edge); we eliminate all

edges with edge betweenness centrality 1, which gives the subgraph shown in Figure

4.13 (c).

4.5 Experiments

Our experiments show that the cycle paths network generated with the DNG algorithm

cover 20% more trips than the current cycle paths network in London. We give details

about the datasets used and the implementation in the next section.

4.5.1 Dataset description

The cycle paths network generated with the DNG algorithm is constructed based on

a subset of Santander Cycle hire journeys provided publicly by Transport for London

(TfL)1. We compare its coverage rate with that of the existing cycle routes network in

London, which we build by matching the cycle routes provided by TfL to the Open-

StreetMap (OSM) London road network. The three datasets are described below.

Santander Cycles journeys

Santander Cycles is a public hire scheme in London. TfL publishes anonymous user

datasets that contain the name of the origin and destination docking stations for each

rental. We extracted the data for one week, 21st-27th of August 2019, a total of 242,193

trips. The origin and destination docking stations were then matched with their respec-

tive latitude and longitude locations. Figure 4.14 shows the usage of docking stations

(with aggregated origin and destination locations). We notice a number of hotspots

concentrated in the city centre; they are usually close to a tube station, consistent with

the assumption that bike rentals alleviate the “last mile problem” (DeMaio, 2009), that

describes the movement of people or goods to a final destination. The assumption is

further supported by the distribution of lengths: about 40% of the trips are less than

2km, as can be seen in the top plot in Figure 4.15. In this work we are looking to

1Powered by tfl open data: https://cycling.data.tfl.gov.uk/ Accessed:2019-12-20.

https://cycling.data.tfl.gov.uk/
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partially cover trips, therefore we do not consider those with lengths less than 1km.

The final lengths distribution can be seen in the bottom plot in Figure 4.15.

Figure 4.14: The aggregated usage of docking station (count for both arrival and desti-

nation).

Figure 4.15: Trip lengths distribution before and after removing the trips shorter than

1km. Most trips are relatively short.
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London road network

We selected a portion of the London road network based on the bounding box deter-

mined by the hire journeys (coordinates: 51.542138°N, 51.454752°S, -0.002275°E,

-0.229116°W). The network, shown in Figure 4.16, was extracted with the Python

package OSMNnx (Boeing, 2017) that works with OpenStreetMaps APIs to retrieve

and analyse street networks. The resulting London subgraph is composed of 72531

nodes and 183807 edges and has a total edge length of 7993km. The network was used

together with the cycle routes data to build the London cycle network.

Figure 4.16: London road network

Cycle routes

The routes provided by TfL, also called Cycleways (shown in Figure 4.17), are paths

generally segregated from the rest of the traffic; the network is currently being ex-

panded and is estimated to reach 450km by 2024 1.

The GeoJSON file that contains the data describes the routes’ geometry. They are split

into line segments, where each segment is a sequence of latitude longitude coordinates,

1As mentioned on: https://tfl.gov.uk/modes/cycling/routes-and-maps/cycleways

https://tfl.gov.uk/modes/cycling/routes-and-maps/cycleways
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Figure 4.17: Opened London Cycleways and the individual names (e.g. CS2)

which need to be matched to the road network. Map matching is generally not a triv-

ial problem (Newson and Krumm, 2009) due to errors in measurements and multiple

candidate matches. In our particular case, the difficulty comes from the missing corre-

spondence between the points describing the lines and the road network. Simply using

built-in functions for building the graph misses road network nodes along the paths

(see Figure 4.18); these are key in our problem because they allow the entrance and

exit all along the paths.

Our approach was to select the nodes closest to the endpoints of each line and compute

the shortest path between them in the London road network. In this way we make

sure that every node found along the routes is included. The final network (in Figure

4.19) is the induced subgraph determined by the set of nodes in the shortest paths; it

has 2842 nodes and 5326 edges and a total edge length of approximately 212km. In

our experiments we build a network of similar length and compare the number of trips

covered.
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Figure 4.18: Cycleways network (open and planned routes) based on shape

Figure 4.19: Cycleways network (open routes) based on shortest paths

4.5.2 Experimental setup

In the following experiments we set the maximum travel distance to reach a path dt to

be 750m and the stretch factor s to be 1.5. The number of projection lines is 50. For

the first experiment we consider a set of grids where the smallest cell size is 3.75km
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(5 grids) and we do not consider translations. We impose that every rectangle should

cover at least 3 trips. In the comparison experiments the smallest cell size is 2.5km

and we do consider the grid translations. In all experiments the algorithm stops when

it reaches at least 90% coverage.

4.5.3 Trip coverage

The algorithm needs a small number of trips to build a network with good coverage. To

show this we selected random samples of different sizes from the set of all trips. Based

on each sample we built a network of paths. Then we computed the coverage given by

each network for a new sample of 5000 trips. Figure 4.20 shows the number of trips

covered for each network (denoted by Covered); the figure also shows the number of

trips for which the endpoints are close to a path, a route through the network exists, but

the stretch constraint is not respected (denoted by Path exists). With a small set of 100

trips the constructed network covered more than 1500 out of the 5000 unseen trips.

The paths built based on 1000 trips cover more than 75% of new trips. By having a

good coverage on a set of trips that was not seen, we show that the algorithm learns the

structure of the data. Due to setting a minimum coverage for each rectangle, some trips

remain uncovered because there are no other nearby trips and are therefore outliers in

the dataset.

Figure 4.20: The number of trips out of 5000 previously unseen trips covered by a

network built based on 50, 100, 500, 1000, 1500, and 2000 trips.
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4.5.4 Comparison with current cycling network

For this experiment we extracted a random sample of 500 trips from the total set.

Based on this we generated a network that was then simplified to reach the same total

length as the Cycleways network, the current bike lane system in London. We then

considered sets of different sizes containing trips that were previously not seen. For

each set we computed 3 quantities: the number of trips that are close to a lane, the

number of such trips where a path exists through the network and the number of trips

for which the stretch constraint is also valid. Figure 4.22 shows that the proposed

network consistently covers more trips than the current one, usually with 20% more

trips. In this setup we used the most basic network simplification technique, where we

considered the cost of each edge to be 1 and the utility the number of trips that use it.

Figure 4.21: The resulting simplified network.

Figure 4.22 shows that the Cycleways network provides more lanes that are close to

the origin and destination of the trips than our proposed network. That can be partly

due to the nature of the data - it is possible that bike docking stations are placed closer

to existent bike paths. Regardless of this, one reason why the final number of covered

trips is less than in our proposed network is the lack of continuity between paths in the

Cycleways network (comparison of blue and green bars in Figure 4.22). Improving

the connectivity of the cycling network is widely recognised as a main objective of

cycling infrastructure planning (Furth and Noursalehi, 2015). Our proposed method

can be used as a tool to improve the current network and find the street segments likely

to increase the number of trips covered, without introducing large detours.
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Figure 4.22: Comparison on the number of trips covered with the Cycleways network.





Chapter 5

Regional factors in an ensemble

framework for

photovoltaic power prediction

5.1 Introduction

World energy consumption is predicted to increase by 50% by 20501 due to urbani-

sation and increased standards of living. Given the high levels of greenhouse gases

emissions caused by traditional energy sources, demand for sustainable alternatives is

on the rise, with renewable sources being the fastest growing. Including renewable

sources in the current energy system is difficult because power output forecasting, cru-

cial to the optimal planning and running of renewable power plants, is challenging

under variable weather conditions.

In this work we focus on forecasting solar photovoltaic (PV) power production. As one

of the most popular sources of renewable energy, it is found in residential, commercial,

off-grid and utility-scale domains and accounts for more than 2% of the global power

consumption2. The generated power is the result of the complex interaction of atmo-

spheric factors, which by themselves are difficult to model due to the chaotic nature

of the atmosphere (Zeytounian, 1991). Some of the challenges specific to solar power

forecasting are the rapid, stochastic formation and movement of clouds, which can

1Source: https://www.eia.gov/todayinenergy/detail.php?id=41433
2Source: https://ourworldindata.org/renewable-energy
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lead to sudden, large fluctuations in the power output, and quantifying the impact of

fog and snow on the energy production. It is critical to be able to predict the intensity

and duration of fluctuations. This type of fluctuations make the PV power time series

non-stationary; the power production is noncontinuous with a behaviour that resembles

a long memory process (Perpin and Lorenzo, 2011). These factors pose challenges in

PV power production forecasting.

Machine learning has the potential to mitigate some of the challenges related to PV

power production forecasts. The increasing available volume of both energy and

weather data enables the usage of new technologies and data-intensive algorithms for

more accurate forecasts. One advantage of machine learning techniques is that the

interacting factors do not need to be modelled explicitly; while less transparent than

physical models, they often give high accuracy in practice. A further advantage is the

possibility to handle the noise inherent to weather forecasts indirectly.

The accuracy of forecasting models is highly dependent on the spatio-temporal context

(Perez et al., 2016). As we describe in the next section, prediction models are needed

for a variety of time frames and spatial resolutions. In this work we focus on next

day prediction for power output with a resolution of 30 minutes, which is a typical

setting useful in practical applications. With the temporal dimension fixed, we assess

the impact of the spatial component. It has been shown that aggregating the output of

systems of power plants leads to the smoothing of the power timeseries, due to spatial

correlation (Graabak and Korps, 2016); this implies that predicting the output of a

system of power plants gives more accurate results than predicting individual outputs.

However, the strength of the effect depends on the spatial distribution of the plants

(Wiemken et al., 2001). Fonseca Junior et al. (2014) study the smoothing effect in

relation to support vector machine models for prediction in a few different regions.

They show that reducing the spatial correlation in the input data improves the accuracy

of the prediction models. We investigate how this applies to other machine learning

models and analyse the impact of other spatial factors on the accuracy of predictions

for a suite of frameworks.

Our contributions. Firstly, we propose a day-ahead PV power prediction model for

systems of solar power plants in regions of Hokkaido, Japan. The predictions are made

based on numerical weather forecasts, clear sky forecasts and a persistence model. The

ensemble architecture combines the outputs of a recurrent neural network, a support

vector machine model, and a multivariable linear model, which exploit different pat-
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terns in the data. The ensemble gives a higher accuracy than the individual models

in terms of root mean square error. Secondly, we investigate the influence of spatial

factors on the accuracy of the ensemble and individual models. We show that having

separate local models for self contained areas (based on similar weather conditions)

gives higher accuracy than a single model that predicts the total output. Moreover,

models including the weather forecasts from the neighbouring region perform better

than the ones restricted to the area of prediction. This is particularly interesting given

that the effect is noticed in both temporal and non-temporal models. We show that

the ensemble model can be further improved by learning the weights of the individ-

ual models based on their performance on the training step. The models have varying

performance depending on the area of prediction, which justifies both building the en-

semble with different types of models and splitting the larger area into regions with

homogeneous weather conditions.

We continue by summarising recent related works in Section 5.2, where we give an

overview of different types of forecasting models. Section 5.3 describes and analyses

the input and output data, and presents the format used by our model. In Section 5.4 we

describe the ensemble model and the feature selection process. Lastly, the experiments

set-up, results and analysis are presented in Section 5.5.

5.2 Related work

Contrary to conventional energy sources, which most often can be precisely planned,

renewable sources have a variable, dynamic nature, largely dependent on weather con-

ditions (Shivashankar et al., 2016; Sobri et al., 2018). Integrating these sources into

the current energy system at a large scale without destabilising it poses a series of

challenges, amongst which: compensating for the intermittent production and building

accurate forecast methods for reliable planning. Having better production predictions

lowers the running costs of renewable energy systems because it reduces the need for

alternative sources of energy. Depending on the geography and climate of the deploy-

ment area and the properties of the system, making accurate predictions can be difficult

- while there are models that forecast individual weather conditions at various degrees

of accuracy, it is the complex interplay between these factors that translates into the

amount of energy produced.
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Photovoltaic power output. In this thesis we focus on the production of solar pho-

tovoltaic (PV) electric power. A photovoltaic system is a power system comprised

of solar cells that convert the energy of light into electricity through the photovoltaic

effect, a chemical and physical process. The electrical efficiency of a photovoltaic sys-

tem depends on the physical properties of its cells. These properties, the installation

arrangements and meteorological factors determine the electric power output. There-

fore, the difficulty in predicting the power output is at least as high as for predicting the

individual meteorological factors. Out of these, cloud cover has a large influence on

the changes in the output - a passing cloud can cause a change of more than 60% of the

peak output in a few minutes (Mills et al., 2011). We refer to the level of changes in the

power series describing the power output as the variability of the output. Intuitively, a

smooth time series curve is easier to predict than a highly variable one. The temporal

resolution of the series has an influence on the level of variability, with shorter time

steps increasing the variability. Within a PV plant or system of plants the aggregated

output is often less variable than the individual output, depending on the geographical

distribution. This is known as the smoothing effect caused by spatial correlation.

Weather factors. Reliable weather forecasts are critical for accurate power output

predictions. Mathematical grid models for numerical weather predictions use systems

of differential equations that govern atmospheric motion and evolution (Kalnay, 2003),

which describe basic conservation laws. There are several issues that arise: the analyt-

ical solution for these equations is impossible and therefore approximate solutions are

needed; the quality of the solution depends on the quality of the measurements of the

initial conditions (which are difficult to obtain, especially in areas such as oceans); the

resolution of the grid (usually between 1-5km for regional models) is larger than the

scale of a weather process, such as cloud formation (a typical cumulus cloud is less

than 1 km). In the case of cloud coverage, satellites and ground-based sensors can give

information for short term predictions. However, for longer time scales cloud move-

ment is difficult to predict; clouds change shape, speed or dissipate depending on the

atmospheric conditions and all these factors influence the level of solar irradiation that

reaches the power plants. The challenging nature of forecasting weather factors ac-

curately, especially cloud formation and movement, reflects why predicting PV power

output is also difficult.

Accurate PV power forecasts are needed at a wide variety of temporal horizons, from a

few seconds (also called nowcasting) to a few days. Short term predictions are usually
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for time intervals up to a few hours, medium term for next day predictions, while long

term refers to a time frame of a few days. Depending on the resolution of the data

and its type, different approaches are at hand; they are most often split into: statistical,

physical, and hybrid (which combines the previous two). The next paragraphs give a

brief overview of some of these methods.

5.2.1 Statistical models

Linear models

The persistence model (PM) is a fairly common reference tool for solar power predic-

tion (Diagne et al., 2013). It predicts that the output is the same at time t +1 as it was

as time t, where the time frame can range anywhere from minutes to days or years.

While the results for short term forecasting (at the scale of minutes or 1h) can be fairly

accurate, predictions are generally inaccurate for a horizon larger than 1h. As it is a

common benchmark in the literature, we will use a persistence model to compare our

model’s predictions.

Autoregressive moving average (ARMA) and Autoregressive integrated moving aver-

age (ARIMA) models are popular in prediction of timeseries because of their ability to

utilise statistical properties of the data. They are a combination of two elementary mod-

els: autoregressive (AR) and moving average (MA). The AR part refers to regression

on pasts values, while the MA part models the error as a combination of errors from

the past. ARMA models can only be applied to time series that are stationary (with

consistent statistical properties over time); ARIMA is an extension that allows mod-

elling of non stationary series. Both models rely solely on past data, which led to the

creation of autoregressive moving average models with exogenous inputs (ARMAX)

(Li et al., 2014) which allow the inclusion of external factors, such as temperature and

humidity in our case. Autoregressive models perform better than persistence models,

with ARMAX achieving highest accuracy. However, they are also mostly used for

short forecast horizons, on the scale of a few hours (Li et al., 2014).

Linear regression (LR) models describe the correlation between input variables and

output by fitting a linear equation. Multivariable linear regression (MLR) is a gen-

eralisation of simple linear regression, where there is still one output variable, but

multiple explanatory variables. Stand-alone linear regression models have difficulties
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in modelling the complex relationships between environmental and physical factors

and power production (Abuella and Chowdhury, 2015; Deo and Şahin, 2017).

Linear models have the advantage of being interpretable, making the feature selection

process more transparent. This is particularly relevant when dealing with multiple

sources of exogenous input (in the PV power forecast case - the weather factors), that

have varying impact on the predictions. Nonetheless, in practice, non-linear models

often give better performance (Sobri et al., 2018).

In this work we use a Multivariable linear regression model as part of the ensemble.

Multivariable linear regression (MLR)

The simplest model in the ensemble is the multivariable linear regression (MLR) model,

which finds a linear relationship between the input variables and the power output at

each point in time. Using the notation defined in the previous section, the prediction

given by the MLR model for region R for day d at time t is:

PMLR,R(d, t) = β0 +β1Xp(d, t)+β2XCS(d, t)+ ∑
(xi,yi)∈R
j∈{1,...,6}

β3,i, jXNW (xi,yi,d, t, f j).

(5.1)

Non-linear models

Support vector machines (SVMs) are supervised learning models that can solve non-

linear classification and regression tasks. They are able to find more complex patterns

than linear models and are faster, can prevent overfitting, and can have better con-

vergence than neural networks, which can be trapped into a local minimum. In the

context of solar power prediction, SVMs have been used successfully in conjunction

with other heuristics and prepossessing of the data. For example, Shi et al. (Shi et al.,

2012) first cluster days based on the weather conditions into sunny, foggy, rainy and

cloudy days and they build a separate SVM model for each type of day. Then, accord-

ing to the weather forecast for the following day, they predict the solar output using

the corresponding model.

We give more details about the implementation of SVMs in our ensemble.

SVM models are non-probabilistic binary linear classifiers that can be extended to
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solve regression problems. In the case of two-class classification, the model solves

the optimisation problem of maximising the margin, which is the distance between

the decision boundary and the data points belonging to different classes that are clos-

est to each other. Thus, it finds the hyperplane that best separates the data under the

condition that the training examples are classified correctly. For regression, the same

ideas apply, with the slightly different condition that the predictions for the training

instances are within an error from the true values. When the input data shows a com-

plex nonlinear relationship with the output, it is mapped using a kernel function into a

higher dimensional space, where a linear discriminator can be found.

The regression function has the form fω(xxx) = ω · φ(xxx)+ b, where φ maps the inputs

to a high-dimensional space. The function fω is optimal when it minimises the reg-

ularised ε-insensitive loss function L = ∑
n
i=1(oi− fω(xixixi)+

1
2‖ω‖

2. Considering each

timestamp from the training set independently as {(x1x1x1,o1), . . . ,(xnxnxn,on)} the regression

optimisation problem is formally formulated as:

minimise
1
2
‖ω‖2

subject to oi− (ω ·φ(xixixi)+b)≤ ε,

(ω ·φ(xixixi)+b)−oi ≤ ε,

i = 1, . . . ,n,

(5.2)

where the notations are:

• oi - the output for training instance i

• n - the number of training instances (in our case the number of days × number

of measurements per day)

• ε - the width of the error-insensitive tube, which describes the maximum devia-

tion from the actual output.

In this case it is assumed that the function f exists such that all data points are in the

f ± ε tube. This is extended to allow a number of errors (data points outside the tube)

by introducing a soft margin. Given a positive constant C - known as the regularisa-

tion parameter - and two positive constants ξ,ξ′ - slack variables - that measure the
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deviation from the tube, the optimisation problem becomes:

minimise
1
2
‖ω‖2 +C

n

∑
i=1

(ξ+ξ
′)

subject to oi− (ω ·φ(xixixi)+b)≤ ε+ξ,

(ω ·φ(xixixi)+b)−oi ≤ ε+ξ
′,

ξ,ξ′ ≥ 0, i = 1, . . . ,n.

(5.3)

This is known as Support Vector Regression and can be transformed into its dual

quadratic programming problem using Lagrange multipliers:

minimise
1
2
(ααα−α

∗
α
∗

α
∗)T K(ααα−α

∗
α
∗

α
∗)+ ε

n

∑
i=1

(αi +α
∗
i )+

n

∑
i=1

oi(αi−α
∗
i )

subject to
n

∑
i=1

(αi−α
∗
i ) = 0,

0≤ αi,α
∗
i ≤C, i = 1, . . . ,n,

(5.4)

where ααα,α∗α∗α∗ are the Lagrange multipliers and K is a n× n symmetric matrix given by

the chosen kernel function.

Radial basis functions (RBF) are a popular choice for the SVM kernel function. In the

implementation used in our model it is defined as:

Ki, j = e−γ|IiIiIi−I jI jI j|2

where IiIiIi and I jI jI j are the ith and jth vectors of measurements and 1/γ is the number of

features of each input vector. RBF kernels give good results in practice and are easier

to calibrate than other kernels.

Artificial neural networks (ANNs) are perhaps best suited to model non-linear, dy-

namic data for a wide range of time horizons, especially in the case of noisy, uncertain

input, which is the case with weather forecasts. One important advantage is their ca-

pacity to model data with high volatility, without imposing restrictions on the type

of data or on its statistical properties, such as known distribution. Recurrent Neural

Networks (RNN) achieve state of the art performance in many temporal modelling

problems (De Mulder et al., 2015; Lipton, 2015). The more advanced RNN layers
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possess an additional memory unit that can identify correlation between inputs and

future outputs in temporally-indexed sequences of values. The RNN models proposed

for PV power forecasting differ in their architecture and input data. Abdel-Nasser

and Mahmoud (Abdel-Nasser and Mahmoud, 2019) propose a series of long short-

term memory (LSTM) RNN models with different architectures to predict hour-ahead

power output. Like all RNNs, LSTMs model the temporal changes, but they have the

added advantage that they avoid long term dependency problems such as vanishing or

exploding gradients (Bengio et al., 1994). Gated recurrent unit (GRU) RNNs are sim-

ilar to LSTMs, but have fewer parameters, which makes them more computationally

efficient. They outperform LSTMs on certain tasks (Jozefowicz et al., 2015) and are

better suited in cases when there is less training data. Wang et al. (Wang et al., 2018)

show the performance of GRUs in the context of short-term PV power predictions.

The most complex model in the ensemble is a Gated recurrent units network, described

below.

Gated recurrent units network (GRU)

Artificial neural networks (ANN) are widely used in power output forecasting due to

their ability to extract patterns from highly complex, multidimensional data such as

weather forecasts. Generally, the stages in building an ANN model are: (1) splitting

the data into training, validation and test; (2) choice of architecture and parameters;

(3) training and validation, in which the learnt weights of the network change until a

certain level of accuracy is reached; (4) testing on unseen data.

Recurrent neural networks (RNN) are a type of network that is adapted to work with

sequential data. Standard RNNs are difficult to train because they keep track of the

weights from every node that contributed to the calculation of the output; this gives

the exploding and the vanishing gradient problems (Bengio et al., 1994). We used a

particular RNN layer design called Gated Recurrent Units (GRU) (Chung et al., 2014)

that is represented in Figure 5.1 (more details about the notation are given in later para-

graphs). GRU networks address the exploding and the vanishing gradient problems by

adding update and reset operations that choose which information should be passed on

to the next layer.
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Figure 5.1: Gated recurrent unit1

We briefly describe how the activation of a GRU works. The state at time step t,

denoted as the hidden state ht , acts as the memory of the network, holding information

about the data that was seen in the previous t−1 time steps. Looking at Figure 5.1, we

see that the information that arrives at each unit is the value of the previous hidden state,

ht−1, and the input at the current state xt . The update and reset gates are values between

0 and 1 computed using the input, previous state and learnt weight vectors. They allow

the hidden state to either ignore the previous state or update it with a new hidden state.

At each time step (corresponding to a hidden state) the following computations take

place:

1. update gate: zt = σ(W (zt)xt +U (zt)ht−1) - both the current input and previous

state vector are multiplied with their corresponding weight vectors; a sigmoid

function is applied such that the result is between 0 and 1;

2. reset gate: rt = σ(W (rt)xt +U (rt)ht−1) - the same operations as before, but with

1Picture from: https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9e

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9e
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different learnt weight vectors W (rt) and U (rt);

3. current memory content: h′t = tanh(Wxt +U(r�ht−1)) - if r is close to 0, then the

hidden unit will ignore the previous state; a tanh function is applied to squeeze

the value between -1 and 1;

4. final memory: ht = zt�ht−1+(1− zt)�h′t - the reset gate chooses how much to

keep from the previous state and how much to rewrite with the current memory

content.

Intuitively, the two gates help capture dependencies at different scales. Short-term

dependencies tend to be learnt when the reset gates are activated (r close to 1), while

long-term dependencies are captured by units where the update gates are more active

(Cho et al., 2014).

Other layer designs that we considered included the simplest, original RNN layer de-

sign and the more elaborate Long Short-Term Memory (LSTM) layer design (Schmid-

huber and Hochreiter, 1997). We use a GRU layer design due to the better performance

in our experiments; it is also better suited for the amount of historical data that was

available.

5.2.2 Physical models

Physical models describe explicitly the relationship between power production and

environment, based on information such as a detailed physical description of the atmo-

sphere (including gases and aerosols), local topography and plant properties. There are

three types of physical models, depending on the source of the input data: numerical

weather predictions, sky imagery, and satellite images. Numerical weather prediction

models use differential equations that describe the dynamics of the atmosphere (Math-

iesen and Kleissl, 2011). Sky imagers provide a hemispheric view of the sky, from

which clouds, their position and motion are determined (Yang et al., 2014); they are

particularly useful in very short term power prediction. Similarly, satellite images are

used to model cloud motion (Perez et al., 2010). These models have the advantage

that they are deterministic physical models and they do not need long historical data.

One of the disadvantages is that they are designed specifically to a particular power

plant and location and they need detailed information about the characteristics and

parameters of all underlying factors of power production (Ulbricht et al., 2014).
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5.2.3 Hybrid models

Hybrid models combine the approaches of statistical and physical models. Statistical

models can become hybrid if they use the output of physical model as input for the

prediction. Similarly, physical models can become hybrid if they correct systematical

errors using statistical tools. The popularity of hybrid models is due to their capability

to take advantage of the strong points of different techniques. There is a large body of

evidence that they outperform stand-alone models (Zhang, 2003; Ogliari et al., 2017).

Ensemble learning via stacking

Ensemble learning refers to the method of combining multiple learning algorithms to

improve the predictive performance of the individual models. In this work we compare

an average ensemble with a weighted average ensemble, that combines the models

based on their performance on the validation dataset. The approach is called stacked

generalization or stacking Wolpert et al. (2013). First, each type of model is trained

on a subset of the data, the training set; secondly, we learn the weights of each model

in the ensemble based on the error on a separate subset of the data, the validation

set. Finally, the ensemble model combines the individual models with the respective

learnt weights to predict the output on a new dataset, the test set. Grid search is one

typical method to find the weights of the individual models. It considers a subset of

all parameter combinations. We discuss the details of this approach in the experiments

section.

5.3 Data representation and analysis

In this section we give details about the sources of data used in our models. The

input consists of weather forecasts and forecasts of power output in the absence of

clouds. We also incorporated persistence data, the location, individual capacity, and

the azimuth and tilt angles of the panels. A visual inspection of the power output

timeseries shows there are no obvious temporal or spatial patterns. In all the following

plots the values for the output and the dates have been removed at the request of the

data provider.
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5.3.1 Photovoltaic power output

The PV power output data was provided by Tokyo Electric Power Company Holdings

(TEPCO) and Hokkaido Electric Power Company (HEPCO) as part of the “PV in

HOKKAIDO” contest for Predicting Power Output of Solar Power Plants in Hokkaido,

Japan. The output was aggregated from power plants in two regions of the island; the

regions have different climatic features, geographical distribution of power plants, total

capacities and maximum output, as seen in Figure 5.2. We will refer to the two regions

as S1, for the southwest region, and S2, for the eastern one. The final aim is to predict

the output for the entire island.

Figure 5.2: The geographical regions (power plants represented by red squares) and

the respective maximum power output for each region.

The PV power output is aggregated from 15 solar power plants across the island be-

tween January 2016 and December 2018, with measurements taken every 30 minutes.

Due to a blackout in September 2018, 2 weeks of data are missing. We investigate

the existence of spatial-temporal patterns by analysing the power output visually, and

comparing the distributions by region, month, hour and maximum achieved values.

A comparison of the time series data reveals no obvious temporal or spatial regularity,

as is clear from Figure 5.3. The top figure shows data for the same week from the 3

years with a variety of weather conditions: clear, mostly sunny, partly cloudy, mostly

cloudy and overcast. While the PV power outputs between the two regions are more

highly correlated (particularly on clear days, disregarding the difference in amplitude,

see Figure 5.3 bottom), there is still a large discordance in the daily patterns, caused in
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part by the movement of clouds from one side of the island to the other and differences

in amounts of fog and snow.

Figure 5.3: Power output timeseries comparison across years (top) and regions (bot-

tom) for a variety of weather conditions for one week.

The average hourly output, as expected, follows a bell shaped curve (Figures 5.4 and

5.5). Across the two regions, besides the difference in the amplitude of the output, we

notice a much larger variance in the distribution of hourly output for region S1 (see

Figure 5.5). Correspondingly, an inspection of the regional output timeseries reveals

different levels of smoothness (with the output in S2 being more smooth). This can

partly be explained by the different geographical distributions of power plants in the

two regions: most of the power plants in S1 (including the highest capacity one) are

concentrated in a small area, while the power plants in S2 are scattered in a larger

area. This is related to the smoothing effect, discussed in Section 2.3: for sufficiently

large distances dispersion of power plants leads to a decrease in fluctuations of the

aggregated output. We will use this insights to interpret the results of our experiments.

Lastly, looking at the total maximum monthly power output, we notice some seasonal

similarities. Figure 5.6 (a) displays the maximum monthly values for the 3 years of

data; February, March, April, May and December have close maximum values, while

the highest variation between the 3 years is recorded in January. The maximum power

output is usually registered between 10am and 1pm (Figure 5.6 (b). However, the
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Figure 5.4: Total output between 2016 and 2018. The box plots show the 5-95 per-

centiles for each hour and the dotted line connects the respective means. The average

hourly output perfectly follows a bell curve.

Figure 5.5: The hourly average power output in the two regions.

distributions of the values from 11am, 11:30am, 12pm and 12:30pm (Figure 5.7) do

not show the same pattern of seasonal similarity - there is a large variation in the val-

ues even between the months with similarly large maximum values. The similarity

in maximum power output between some of the months could be useful in designing

specialised seasonal forecast methods, with the observation that the maximum is reg-

istered at different hours even in similar months. However this is out of the scope of

this work.
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Figure 5.6: The total maximum power recorded every month for the 3 years and the

count for the hours when the maximum was recorded. Predicting the maximum each

day is challenging.

Figure 5.7: The monthly and yearly statistics for the power recorded between 11am and

12pm show high variability for total power produced at a fixed time.

The analysis of temporal and spatial properties of the PV power output shows high vari-

ability and no conclusive regional, seasonal, or hourly patterns. In general, changes in

solar power output can be large, appear suddenly and often, due to the direct influence

of fluctuations in solar irradiance caused by passing clouds (as opposed to wind power

generation where the production is more continuous). As we will show through our

model, numerical forecasts for temperature, wind direction and cloud cover can predict

if and when these fluctuations will appear. For clear days, when such fluctuations are

absent, the output is relatively easy to predict using clear sky models. We next describe

the numerical weather forecast data and then the clear sky models data.
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5.3.2 Numerical weather forecasts

We use weather forecasts given by the meso-scale models (MSM) of the Japan Me-

teorological Agency 1. Meso refers to the regional scale of the model – which varies

between a few kilometres and a few thousand kilometres, as opposed to the global

scale. MSMs are 3-dimensional models based on primitive equations: the momen-

tum equation, thermodynamic equation and equation for conservation of mass. In our

case, the MSMs predict meteorological parameters at 5km grid points over the next 39

hours, every 3h, for a rectangular flat area of 4080km×3300km covering Japan and its

surroundings. In our models we use the forecasts made at 6pm to predict the output

for the following day; this is a typical requirement in a practical setting. The forecasts

have a temporal horizon of 10 hours to 26 hours which corresponds to a prediction

interval from 4am to 20pm the next day. 2.

We considered a subset of the weather properties that are forecast for every hour and

extracted the values at the closest grid point to each power plant – in total 15 locations.

For any given prediction day we used forecasts created at 6pm the previous day. The

weather features in our models are:

• cloud cover (%) - low, medium, high and total cloud cover

• pressure (PA) and pressure reduced to mean sea-level pressure (PA)

• relative humidity (%)

• temperature (K)

• total precipitation (kg/m2)

• u-component and v-component of wind (m/s).

The meteorological forecasts are different in terms of accuracy, due to greater variabil-

ity both at the temporal and spatial levels. Figure 5.8 compares the monthly values

for one location (a) and all 15 locations (b) between temperature and total cloud cover.

The total cloud cover is defined as the percentage of the surface obscured by all clouds

for the entire atmospheric column at a particular grid point.

1Japan Meteorological Agency Numerical Weather Prediction Activities at: https://www.jma.

go.jp/jma/en/Activities/nwp.html, accessed: 13 March 2019
2The latest MSM forecasts can be downloaded from http://apps.diasjp.net/gpv/cgi-bin/

uncgi.cgi/GPVdate2b.sh

https://www.jma.go.jp/jma/en/Activities/nwp.html
https://www.jma.go.jp/jma/en/Activities/nwp.html
http://apps.diasjp.net/gpv/cgi-bin/uncgi.cgi/GPVdate2b.sh
http://apps.diasjp.net/gpv/cgi-bin/uncgi.cgi/GPVdate2b.sh
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(a) Comparison of values for temperature and total cloud cover at one location.
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(b) Comparison of mean monthly values for temperature and total cloud cover at all 15 location.

Figure 5.8: Spatio-temporal monthly variation of temperature and total cloud cover
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5.3.3 Clear sky model predictions

Clear sky models predict the global horizontal irradiance (GHI) in the absence of visi-

ble clouds. The GHI is the sum of direct and diffused radiation reaching Earth’s surface

and is highly correlated with the amount of solar power produced by photovoltaic pan-

els at that location. The models incorporate information about extraterrestrial solar

irradiance at normal incidence and the atmospheric absorption and scattering of solar

radiation (known as the Linke turbidity index) at a specific location, taking into account

the altitude. In the absence of weather observations or numerical weather forecasts, the

models produce similar forecasts for each year.

We used the open-source Python module PVLIB (Holmgren et al., 2018), more specifi-

cally the implementation of the Ineichen and Perez clear sky model (Reno et al., 2012),

to forecast the clear sky GHI quantity at each power plant at 30 minute intervals for

the 3 years of data. We then converted the timeseries into predictions of power output

assuming a default solar panel size, type and AC/DC converter. Weighted summation

of predictions for each power plant lead to regional predictions for the power output

in the absence of all weather effects. The weights were chosen according to the AC

nominal capacity of each power plant. The predictions were then scaled to match the

99th quantile of the power output.

Figure 5.9 shows the forecast for one week compared with the actual output in the

corresponding region. The predictions are fairly accurate for days with no clouds; the

mismatch between the maximum values is due to the scaling factor being different

across seasons - the 99th quantile for the power output is most likely recorded during

the summer months, and will be larger than the maximum recorded in the winter (see

Figure 5.7). Adding temperature and wind forecasts to the clear sky model could result

in more accurate forecasts for clear days. In our experiments we noticed that clear

sky predictions had the highest impact when compared to any of the weather factors.

Notice that clear sky predictions also delimit when days start and end.

5.3.4 Input data representation

Denote by d and t a specific day and time and by x and y the latitude and longitude of

the location of a power plant. Let O be the power output, CS the clear sky model and

NW the numerical weather forecast. We define:
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Figure 5.9: Clear sky power output predictions for one week in the two regions.

Figure 5.10: Comparison of the hourly distributions of the clear sky predictions in the

two regions.

• persistence model predictions (aggregated for a region)

XP(d, t) = O(d−1, t)

• clear sky model predictions (including the properties of power plant at location



5.4. PV power output prediction model 97

(x,y))

XCS(x,y,d, t) =CS(d, t, p(x,y))

• numerical weather forecasts (where f 1, . . . , f6 are the weather variables)

XNW (x,y,d, t) =


NW (x,y,d, t, f1)

...

NW (x,y,d, t, f6)


Say the prediction is made for the next day between time t1 and tT . Then we have the

following vector notations:

XP(d) = (XP(d, t1) . . .XP(d, tT ))

XCS(d) = (XCS(d, t1) . . .XCS(d, tT ))

XNW (x,y,d) = XNW (x,y,d, t1) . . .XNW (x,y,d, tT ).

Denote by M the PV power prediction model. The next day prediction of the PV power

output for region R ∈ {T,S1,S2} is:

PR(d) = M



XP(d)

XCS(d)

XNW (x1,y1,d)
...

XNW (xN ,yN ,d)


for all (xi,yi) ∈ R. We denote the matrix of all input for region R and day d simply by

IR,d , therefore PR(d) = M(IR,d).

5.4 PV power output prediction model

Our proposed model is an ensemble of three types of models: multivariable linear

regression (MLR), support vector machines (SVM) and gated recurrent units network

(GRU). The concept behind ensemble learning is to train a suite of base learners and

combine their individual predictions. The final values are the average of the predic-

tions from the individual models. We observed that each of the models performed
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well, but combining the results gives the highest accuracy, which suggests that they

exploit different patterns in the data. We give details about the way the ensemble is

constructed.

5.4.1 Feature selection

As described in Section 5.3, the complete feature set is composed of the persistence

model predictions, the clear sky model predictions, and the weather forecasts at the

location of each power plant. For some of our experiments we eliminated a set of the

weather forecasts, keeping only the most relevant ones. The selection was made by

separately training a linear regression, a gradient boosting model, an SVM, and a GRU

network on the full set of features. For the first three models the features were chosen

according to their weights; for the neural network we did a sequential backward selec-

tion that sequentially removes the features that give the smallest decrease in accuracy,

these being the least relevant ones. There was a significant overlap between the types

of features that the models selected.

The clear sky model predictions were classified as the most important by all models;

this is to be expected, because on clear days the predictions match the power output al-

most exactly. Amongst the weather forecasts, the variables that were most commonly

rated as important were wind and temperature. Perhaps surprisingly, very few of the

cloud features were ranked as important. One reason is the difficulty to predict cloud

coverage accurately, especially the day before and at hourly intervals. This is partly

because cloud formation is the result of the complex interaction of a large number

of parameters. Moreover, forecasting models are often based on correctly identifying

cloud coverage at multiple altitudes from satellite imagery, which can be difficult espe-

cially in the presence of dense high clouds. Indeed, comparing the day ahead forecasts

for temperature and cloud cover to the 0h forecast, we notice large discrepancies in

the accuracy (see Figure 5.11). 0h forecasts are simulation results for the following 3

hours based on current observations at certain locations, for each point on the MSM

grid.

To understand the extent to which the cloud forecasts are less accurate than the other

weather variables, we computed the errors between the forecasts and the 0h forecasts

for each variable. We rescaled the values such that they are between 0 and 1 and then

computed the mean squared error between 0h forecast and day ahead forecasts. This
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Figure 5.11: Comparison between 0h forecast and day before forecast for temperature

and total cloud cover.

comparison suffers from the fact that the 0h forecast is not an actual observation, but

the result of a simulation. However it helps identify the general trend in the forecast

errors. In Figure 5.12 we can see that all variables related to cloud cover have a much

larger error than all other variables. Cloud cover variables are therefore most difficult

to predict, yet the ones that can improve prediction the most.

5.4.2 Grid search weighted average ensemble

The weight of each of the models in the ensemble corresponds to the expected per-

formance of that model. To find the coefficients of the individual models we use grid
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Figure 5.12: The mean squared error for each normalised weather factor. Cloud cover

forecasts have substantially larger errors.

search, described in Section 5.2. In general, the weights can be any values strictly

larger than 0 and lower than 1 such that they sum up to 1. We choose values between

0.1 and 1 with a step size of 0.05 and test all combinations of weights on the validation

dataset.

5.5 Experimental setup and results

We first present the suite of experimental setups based on the prediction region and the

set of features, we continue with the error metrics, the results and an analysis. Firstly,

we compare the performance of the ensemble with the individual models. The ensem-

ble achieves the highest accuracy, higher than the baseline models and on par with

results from the literature from nearby regions. More importantly, our experiments

show that the spatial distribution of the plants has an impact on the forecast accuracy,

but this depends largely on the type of model. MLR is mostly unaffected by the choice

of features, while SVM and GRU have contrasting behaviours. First let us describe the

experimental setups we considered.

We denote the output for the three regions of prediction by S1,S2,T , where T refers to

the total (S1 and S2 together) and run experiments with the following settings:

• one model for predicting T , using the full set of features: MT



5.5. Experimental setup and results 101

• one model for predicting T , using the set of highest ranked features: MT,F

• two models predicting S1 and S2, using the full set of features for both: MR; the

outputs are then summed up to compare with the actual output

• two models predicting S1 and S2, using the set of highest ranked features for

both: MR,F

• two models predicting S1 and S2, using only the features from the respective

region: MR,S

Output Feature set Name

T full set MT

T highest ranked MT,F

S1, S2 full set MS

S1, S2 highest ranked MS,F

S1, S2 regional MS,R

Table 5.1: Model names

Implementation details

We use the sklearn Python library to implement the MLR models and SVMs with

a radial basis function kernel. The GRU model is implemented in Pytorch. The

number of layers in the neural network and the size of each layer were selected us-

ing dichotomous search. The network is composed of 2 layers with ReLU activation,

Adam optimiser, 0.01 learning rate, 20% dropout, batch size of 64 and the training is

for 100 epochs.

5.5.1 Dataset split

We trained the model on 2 years of data (2016 and 2017) and report the results on

one year of data (2018). In this way the results are not influenced by seasonal weather

patterns. Out of the 2 years of training data, we used 10% for validation; to simulate

the task of predicting whole days, the data is split into days, rather than individual

measurements, resulting in a set of approximately 30 days for validation.
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5.5.2 Evaluation metrics

To evaluate the accuracy of the predictions we compute three error metrics. We denote

by Ct the total nominal capacity of the power plants and by Cm the average obtained

power for the test year. Pi is the prediction at timestamp i and Oi is the actual output.

The sum is computed on all timestamps in the test year. The errors we measured are:

• root mean squared error normalised by the total capacity:

NRMSE1 = 100×

√
1
N ∑

N
i=1(Pi−Oi)2

Ct

• root mean squared error normalised by the average obtained power:

NRMSE2 = 100×

√
1
N ∑

N
i=1(Pi−Oi)2

Cm

• root mean squared error:

RMSE =

√
1
N

N

∑
i=1

(Pi−Oi)2.

The skill score is a measure of performance with regards to a baseline, most often the

persistence model. It is computed as 1− ∑
N
i=1(Pi−Oi)

2

∑
N
i=1(Pi,b−Oi)2 , where Pi,b is the prediction of

the baseline.

We optimise the ensemble with respect to the root mean squared error and present the

results in the next section.

5.5.3 Performance of the ensemble model

The results from Table 5.4 show that the highest accuracy was achieved by the ensem-

ble model that combines predictions for S1 and S2 based on the set of most important

features, while the lowest accuracy was given by the model that predicts the output for

the two regions only based on the local features. All models perform better than the

baselines.

Our most accurate model has a skill score of 0.77 for the one year of data, which is

similar to the scores reported by Fonseca et al. (Fonseca Junior et al., 2014, 2015) for

regional PV power forecasts in several regions in Japan. However, as pointed out in
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Model NRMSE1 NRMSE2 RMSE

MT 52.36 6.69 27.25

MT,F 51.70 6.60 26.91

MS 51.91 6.63 27.02

MS,F 50.95 6.51 26.52
MS,R 52.42 6.69 27.28

P 104.11 13.30 54.19

CS 140.26 17.92 73.00

Table 5.2: Error metrics for the ensemble models, the persistence model (P) and the

clear sky model (CS)

their work, the same model can give slightly different skill scores depending on the

particularities of the regions.

To better understand the differences in accuracy we look at the individual performance

of the models that make up the ensemble, shown in Table 5.3. The main findings are

summarised below:

• The ensemble gives the highest overall performance; this is achieved in the

framework where we consider the highest ranked features and the prediction

is done separately for the two regions (MS,F ).

• The ensemble has the highest accuracy in all the different settings (MT,F , MS,

MS,F , MS,R), except for the case where we consider all features (MT ); the accu-

racy is slightly lower than GRU because of the poor performance of SVM in this

setting; this can be explained by the higher amount of correlated variables in the

full set of features when compared to the top features.

• The low performance in the framework where only the features specific to one

area are considered (MS,R) suggests that the models utilise information from the

neighbouring area.

We denote each model by the type and framework, for example MGRU,T is the GRU

neural network model trained to predict the total output on the full set of features.

Looking at Table 5.3, we notice that the framework that gave the highest accuracy

for the ensemble is the one where the deep model has a low performance. This is

compensated by the performance of the SVM model in this framework, where we
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Model Error MT MT,F MS MS,F MS,R

Ensemble

NRMSE1 52.36 51.70 51.91 50.95 52.42

NRMSE2 6.69 6.60 6.63 6.51 6.69

RMSE 27.25 26.91 27.02 26.52 27.28

GRU

NRMSE1 52.15 52.39 52.52 52.46 53.81

NRMSE2 6.66 6.69 6.71 6.70 6.87

RMSE 27.14 27.27 27.33 27.30 28.01

MLR

NMRSE1 59.5 60.61 59.48 60.60 61.15

NRMSE2 7.60 7.74 7.60 7.74 7.814

RMSE 30.98 31.54 30.95 31.54 31.82

SVM

NMRSE1 59.11 55.82 57.35 54.88 58.20

NRMSE2 7.55 7.13 7.32 7.01 7.43

RMSE 30.77 29.05 29.85 28.56 30.29

Table 5.3: The performance of the ensemble, GRU, MLR, and SVM models for all

settings. Blue and red cells mark lowest and highest errors, respectively, for each model

across the different frameworks.

considered only the highest ranking features and predicted the output for S1 and S2.

The difference in accuracy between MSV M,T and MSV M,S,F comes from the amount

of correlation in the feature vectors. The complete set of features contains similar

weather forecasts from locations of power plants that are close together, especially

from region S1. The radial basis function is a popular choice of kernel for SVMs,

but, given that it takes into account only the distances between points, it tends to be

impacted by repeated/correlated variables. This is confirmed by comparing MSV M,T

with MSV M,F and MSV M,S,R with MSV M,S,F . For the latter case, even if the set of features

is restricted to the ones corresponding to the area of prediction, it is precisely this set

that contains the most correlated feature vectors. On the other hand, neural networks

can possibly use correlation as a property of the data. While generally having a large

set of features can be detrimental because of overfitting, having a large set of correlated

features does not necessarily have the same impact; unnecessary features will be given

a small weight. We notice that the accuracy of MGRU,T is similar to MGRU,T,F , which

confirms that the set of highest ranked features was well chosen.
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5.5.4 Seasonal and monthly patterns

Throughout the test year the mean prediction error for the ensemble model remains

fairly stable, as can be seen in Figure 5.13. When considering each model individu-

ally, we notice a peak in the prediction error in February, the month with the highest

snowfall, and another peak in July, probably due to fog specific to the summer months,

especially in the eastern area of the island (corresponding to region S2). The forecast-

ing model would benefit from including data on snowfall and fog.

An interesting observation from Figure 5.13 (b) is that the SVM model performs better

than GRU between April and August, despite GRU being the model with a temporal

component.

(a) Comparison between the mean input and the mean error for the persistence model and the

ensemble in the best performing framework (MS,F ).

(b) Comparison of the mean error between the individual models.

Figure 5.13: The mean prediction errors and their 5-95 percentiles by month

Looking in more detail at the daily curves values, we notice that GRU produces curves

that generally match the output in amplitude, but are smoother, while SVM and MLR

are better at identifying fluctuations, but not necessarily their intensity. This suggests
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that a different scheme for combining the output (such as weighted average or bagging)

from the several models could be beneficial.

Figure 5.14: PV power prediction for one week in June and one week in December.

5.5.5 Comparison with the weighted ensemble model

The proposed model can be further improved by choosing the weights of the individual

models based on their performance on the training and validation sets. In Table 5.4 we

show the comparison with the best performing ensemble, MS,F , which predicts the

output for the separate regions using top features from both areas. We denote the new

weighted model as MS,F,W . It is composed of the 6 same models as MS,F (GRU, MLR,

SVM for each of the 2 regions), but weighted according to their performance.

Model NRMSE1 NRMSE2 RMSE

MS,F 50.95 6.51 26.52

MS,F,W 49.41 6.31 25.7

Table 5.4: Comparison between the ensemble model and the weighted ensemble

model.

To find the weights we perform grid search on all combinations of values between

0.1 and 1 with a step size of 0.05. Starting with all values set to 0.1, we keep each

set that gives an error lower than the current minimum. We record the corresponding

error on the validation set, which gives the curve shown in Figure 5.15. We use the

elbow method (Thorndike, 1953) to determine the set of weights that could perform
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well on the test set. Choosing the global minimum for the validation set error has the

risk of overfitting the model. The elbow method is a heuristic that finds the cut-off

point corresponding to a set of parameters for which the error starts decreasing at a

lower rate. We choose this point to be 125, which gives the corresponding weights, for

regions S1,S2 respectively :

• GRU - 0.2, 0.25;

• SVM - 0.25, 0.1;

• MLR - 0.1, 0.1.

Figure 5.15: NRMSE1 error on the validation set. We apply the elbow method to identify

the set of weights that give high accuracy on the rest set without overfitting. At index

125 the improvement of accuracy starts decreasing.

The different weights for the different areas suggest that the models identify different

patterns in the data and justifies using the different types of models. A next area of

investigation is whether the accuracy of the ensemble can be improved by considering

different weights based on the weather profile of the next day forecast.
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Conclusions and future work

Our work consists of scalable algorithms for solving fundamental problems in learning

from location data. We show that by grouping data points into independent, disjoint

units based on properties related to their spatial proximity and using them as input

diminishes the effects of noise, overfitting, and high dimensionality, leading to im-

provements in computational running time and accuracy. Firstly, we presented a novel

method to compress human mobility trajectories that is useful in making distance es-

timation and similarity queries computationally efficient. Secondly, we developed al-

gorithms for designing transit networks based on a dataset of origin destination trajec-

tories under given constraints. Finally, we show the effect of the spatial component

on the accuracy of an ensemble and individual machine learning models for prediction

of solar power output. In this section we give more details about each topic and give

directions for future work.

Sketches for trajectories

In Chapter 3 we presented a randomised sketching scheme to compactly represent

trajectories. The sketches allow efficient algorithms for a suite of central trajectory

queries and tasks: near neighbour search, distance estimation, clustering, etc. We es-

tablished the effectiveness of the sketching technique in both theory and practice of

trajectory processing. We formally describe the locality sensitive hashing schemes for

Hausdorff and Fréchet distances and prove the probabilistic guarantees. The experi-

ments show strong correlation with Hausdorff and correlation with Fréchet and DTW.

109
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In practice, highly compressed sketches achieve a pruning ratio of 80% accuracy of

80% for nearest neighbours queries.

The type of trajectories we are considering are common in robotics, biological systems

and many other domains. One direction of future work is to adapt the basic randomised

sketching scheme in these areas. For example, in movement ecology, clustering of

trajectories is used to analyse processes such as spatial displacement in foraging be-

haviour. Cleasby et al. (2019) show that Fréchet distance and dynamic time warp-

ing are particularly useful when clustering trajectories with the purpose of observing

changes in movement. They also observe that the volume of animal movement data is

growing rapidly, which makes efficient computation techniques increasingly useful in

this area.

A different direction of work is to consider the temporal dimension; in this case the

trajectories are 3 dimensional objects and the disks are replaced by spheres. Clustering

spatio-temporal trajectories is useful for example in identifying groups of commuters

who take the a similar route in the same time frame.

Transit network design

Chapter 4 presents a heuristic algorithm for the transit network design problem. We

define it in the context of building bike lanes, but it can be built upon for other modes

of transportation such as bus routes or metro lines. Given a road network, a set of

locations for the origins and destinations of bike trips in a city, and constraints on the

construction cost, distance travelled to a path and stretch on the new path, the bike lane

problem is to find a series of paths that would maximise the number of trips that would

benefit from using the system. We show that the problem is NP-hard and propose

a series of solutions, amongst which a fast heuristic algorithm. Compared with the

existent cycling system in London, the proposed algorithm covers at least 20% more

trips with the simplest heuristic. We expect a greater increase with the more complex

heuristics. The algorithm can also be used to generate new segments for the extension

of an existent network.

A point of improvement is to merge overlapping rectangles, which would result in

fewer streets selected in the same area. Another point is that the data we used comes

from cycle hires - while it is representative for a large number of trips, is restricted to
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certain locations (the hire stations).

We note that this is a purely mathematical solution to the bike lane problem - in practice

there are many other constraints that we have not yet considered. For example, not all

segments in the road network are candidates for bike lanes; this is easy to circumvent

by only keeping candidate edges in the initial network.

A direction for future work is to consider paths that follow a straight line, as opposed to

shortest paths in the road network which can have many turns, since there is evidence

that cyclists prefer fewer turns (Hood et al., 2011). To this end the network matching

part of the framework that finds shortest paths in the road network for each tube median

could incorporate a fewest-turns-and-shortest path finding algorithm, such as the one

proposed by (Zhou et al., 2014).

We mentioned that this work can be extended for other modes of transportation, such

as buses or trains. In this case there appear several other factors: the transit network

should be split into a fixed number of routes, the design should take into account place-

ment of stations and the temporal dimension of the trajectories.

Regional factors in solar power prediction

PV power forecasting is a challenging problem due to the complex factors involved in

power production and their variable nature. Machine learning models have been suc-

cessful in achieving high accuracy for next day prediction based on numerical weather

forecasts. In this work we propose a new ensemble framework with three types of

models: multivariable linear regression, support vector machine and gated recurrent

units network. The ensemble gives a better accuracy than the stand-alone models in

terms of the root mean square error. By analysing a suite of model frameworks we

observe that for the ensemble building models for regions with homogeneous weather

conditions gives a higher accuracy than having one model for the total output. More-

over, predictions for an area benefit from weather forecasts from neighbouring areas.

Weighting the models differently based on the performance on training and validation

sets further improves the accuracy.

In terms of improving the current model, in future experiments we will consider in-

cluding snow and fog forecasts. The weighting mechanism could include information
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about weather forecasts, by first clustering the next day predictions and then choosing

the weights based on the type of weather.

In the case of solar power plants there are clear spatio-temporal dependencies between

different locations. One method that can utilise the spatial correlation of the input

data from different sites is predicting the output with graph neural networks (Gori

et al., 2005). Instead of sets of forecasts for each weather variable for each day, the

input would consist of graphs, where for every site there is a corresponding node that

contains the forecast data; an edge between nodes represents how the forecasts are

correlated. Wu et al. (2020) propose a graph neural network framework that learns

the dependencies between nodes. Experiments on a solar power prediction task in a

single step setting show improvements over previous methods. In future work we could

investigate whether a similar method gives better performance for next day predictions.
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report, Citeseer.



Bibliography 117

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm

for discovering clusters in large spatial databases with noise. In Kdd, volume 96,

pages 226–231.

Estrada, M., Roca-Riu, M., Badia, H., Robusté, F., and Daganzo, C. F. (2011). Design
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