
Euler Tours on the Grid

Maria Astefanoaei

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2014

Abstract
The problem of finding whether an undirected graph has an Euler Tour

or not has a very simple polynomial-time algorithm. However, there are
no efficient known algorithms for exactly or approximately counting the
number of Euler Tours on undirected graphs, except in some special cases
(for example on graphs of bounded treewidth [5]). In this project we are
trying to experimentally study the Markov chain using “Kotzig moves” on
Euler Tours.
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Chapter 1

Introduction

The problem of exactly or approximately counting the number of Euler Tours on undi-
rected graphs proved to be difficult to tackle, except for some very specific cases, for
example graphs of bounded treewidth [5]. In this dissertation we studied the mixing
time of a Markov chain that uses a special kind of transformations on a particular graph
structure. The goal was to experimentally evaluate whether the chain may be rapidly
mixing, which would indicate whether there might be an efficient approximation algo-
rithm for the number of Euler Tours on the grid.

The inspiration for the approach came from an earlier attempt of Tetali and Vemapala
[18] to prove the “Kozig moves” chain is rapidly mixing on all regular graphs of degree
4. However, it is well-known that their proof does not hold [10], so we considered
an experimental approach. This approach was feasible because there exists an exact
counting algorithm for Euler Tours on toroidal grids, which allowed us to uniformly
generate uniform random tours on these graphs. To give a rough idea, the project
followed the following steps: first we sampled a big set of Euler Tours of the grid,
which we grouped into pairs; for each of these pairs we have built paths from one
tour to the other, using the Kotzig-moves (or κ-transformations). We were hoping to
demonstrate using these kind of paths that the Kotzig Chain is likely to be rapidly
mixing.

The contributions of the project are:

1. reading and understanding the literature related to the ]P-complexity class, run-
ning time of Markov Chains, conductance, canonical paths, sampling and ap-
proximation algorithms, and Kotzig transformations on grids

2. reading, understanding, filling in the gaps and correcting the transfer matrix al-
gorithm of Creed [3]

3. adapting Dyer’s [6] dynamic programming algorithm to count Euler Tours of
small grids

4. writing a sampling algorithm and generating a collection of pairs of Euler Tours
based on the above table

1
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5. building paths between tours using a rule inspired by Tetali and Vempala’s at-
tempt to prove the Kotzig Chain is rapidly mixing

6. getting an estimate of the edge loading.

To be able to present the experimental settings and motivate our approach we began
by giving basic definitions related to graphs, followed by a discussion on the complex-
ity of counting problems; we then continued Chapter 2 with a general description of
Markov chains and their properties, also presenting the canonical paths technique we
have used hoping to bound the conductance of the Kotzig chain, in order to demon-
strate it is likely to be rapidly mixing. After this general presentation we gave details
about the particular graph structures we have worked with and the kind of transfor-
mations needed to build the Kotzig chain. In Chapter 3 we present the exact counting
algorithm for Euler Tours of low-height grids [3], correct some errors from [3] and
show how to implement exact counting and sampling via a dynamic programming ta-
ble. In Chapter 4 we described how we have built the paths, backed up by the existing
literature. We end both chapters by working through examples in order to illustrate the
steps involved in the described algorithms. In Chapter 5 we present our conclusions.



Chapter 2

Background

In this chapter we describe general notions and techniques related to Euler Tours and
Markov Chains and their mixing time. In the first section we describe the problem of
finding Euler Tours on a graph, which is followed by a presentation of the counting
problem in the second section. After arguing the difficulty of counting Euler Tours and
proving the need to find an approximation algorithm, we described how Markov Chains
work and what kind of properties they need to have to be rapidly mixing, a necessary
condition for developing efficient sampling/approximately counting algorithms. We
continue Section 2.3 by presenting, in general, the “canonical paths” technique with
which we hoped to show the chain we are working with has good behaviour. We end
Chapter 2 with a detailed description of the chain we are interested in, the Kotzig chain,
with its space states and transitions explained.

2.1 Basic definitions

We will begin by giving a few standard definitions and results related to graphs and
Euler Tours.

Definition 1. An undirected graph G = (V,E) is a set of vertices V and a set of edges
E such that each e ∈ E is an unordered pair of vertices, e = {u,v}, where u,v ∈V . The
degree of a vertex v ∈V is the number of edges e ∈ E containing v and we denote it by
deg(v).

Definition 2. Let G = (V,E) be a graph. An Euler Tour of G is a cycle that uses every
edge exactly once. Two Euler Tours are equivalent if one is a cyclic permutation of the
other. We denote the set of all Euler Tours of a graph G by ET (G).

Definition 3. An undirected graph G = (V,E) is said to be Eulerian if it is connected
and all vertices have even degree.

The following result was proved by Euler in the 18th century:

3
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Euler’s Theorem. An undirected graph G = (V,E) contains an Euler Tour if and only
if G is a connected graph and every vertex has even degree.

Proof. Suppose G contains an Euler Tour; then it is necessarily connected. For every
edge “entering” a vertex there needs to be exactly one “exiting”. This gives an even
degree for every vertex.

The other implication will be proved by induction on the number of edges.

Base case: For a graph with one vertex and no edges, there is one possible tour.

Induction step: Suppose any graph with the two properties and having less than n edges
is Eulerian. Given a graph G = (V,E) with n edges, choose an arbitrary vertex v ∈ V
and starting from v build a random walk that only visits each edge once. Continue the
walk until there are no more unvisited edges at the vertex most recently visited. Since
all the vertices have even degree, there are either 0, 2 or 4 unvisited edges incident to
each visited vertex, except for vertex v, which will have only 1 unvisited edge. There-
fore the walk will necessarily stop at v. After removing the visited set of edges from
the graph we will be left with a finite set of connected components all with vertices
of even degree. According to the induction step all these components are Eulerian.
Moreover, all of them intersect the initial cycle in at least one vertex (because G is a
connected graph). Therefore we exchange the pairings of some of the vertices to build
a longer tour. In the end we will have used all vertices and visited all edges.

To check whether a graph has an Euler Tour is therefore not too difficult - it can be
solved in linear time. We only need to check that every vertex has even degree and
also do a breadth first search to verify the graph is connected. A more challenging
problem is to count the number of Euler Tours in the case of Eulerian graphs, which
will be discussed in the next section.

2.2 Counting Euler Tours

Once it is known that a graph has at least one Euler Tour, a natural question to be asked
is how many such tours can be found. It was proved that exactly counting the number
of Euler Tours is a difficult problem, belonging to the ]P-complete complexity class
[2]. In the next few sections general notions of complexity theory will be discussed, in
order to illustrate what it means for a problem to be ]P-complete and to motivate the
need to find a way to approximate the number of Euler Tours of a graph as opposed to
exactly counting them.

2.2.1 Decision and counting problems

In the 1970’s, when computational complexity started being studied more intensively,
scientists were mostly concerned with decision problems. Intuitively, a decision prob-
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lem in computational complexity is one asking for the existence of a solution, for
example “is there a path between two certain vertices in a graph” or “is this graph
Eulerian?”. Valiant [19], one of the most renowned scientists in the field, pointed out
that the counting versions of the problems they studied were sometimes much more
interesting, which led to him defining a new complexity class for these type of prob-
lems. For each decision problem there is an associated counting problem, which asks
for the number of solutions as opposed to asking whether a solution exists. For the
earlier examples the associated counting problems are:“how many different paths be-
tween two certain vertices in a graph are there?” or “how many different Euler Tours
does a given graph have?” No matter how easy the decision problem is, its counting
equivalent does not necessarily have a known efficient algorithm. There are excep-
tions, such as the problem of counting the spanning trees of an undirected graph with
no self-loops; an efficient algorithm for this problem takes O(n3) time in the number
of vertices [13]. However, the majority of interesting counting problems, including the
one we are concerned with, are not known to have polynomial-time algorithms. We
call these counting problems ]P-complete, which we will formally define in the next
section.

2.2.2 Complexity of counting

First, before defining the ]P class, we will define NP, the class of decision problems
which can be verified in polynomial time. Formally:

Definition 4. Let Σ be a finite alphabet and R⊂ Σ∗×Σ∗. For a particular instance x ∈
Σ∗, the decision problem R asks whether there exists some y ∈ Σ∗ such that (x,y) ∈ R.
We say a decision problem R is in the class NP (non-deterministic polynomial time) if

1. there exists a polynomial p(·) such that for any instance x ∈ Σ∗ we have

|y| ≤ p(|x|) ∀y ∈ Σ∗ such that (x,y) ∈ R;

2. there exists a polynomial time algorithm for testing the predicate (x,y) ∈ R.

Similarly, the ]P class is defined as:

Definition 5. Let Σ be a finite alphabet. Given a relation R ⊂ Σ∗×Σ∗ we can define
the counting problem for R as the problem of computing a function NR : Σ∗→ N with
values

NR(x) = |{y ∈ Σ∗ : (x,y) ∈ R}|.

We say the counting problem NR is in the class ]P if

1. there exists a polynomial p(·) such that for any instance x ∈ Σ∗ we have

|y| ≤ p(|x|) ∀y ∈ Σ∗ such that (x,y) ∈ R;

2. there exists a polynomial time algorithm for testing the predicate (x,y) ∈ R.

We will also define what it means for a computational problem to be hard or complete,
but first we need to introduce the notion of reduction.
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Definition 6. For a set of functions F from N to N and two sets S1 and S2 we say that
S1 is F-reducible to S2 if ∃ f ∈ F,∀x ∈ N such that:

x ∈ S1 ⇐⇒ f (x) ∈ S2.

If R is a computation problem such that any NP problem can be reduced to R via a
polynomial-time computable function, then R is called NP-hard; if R is itself NP, it is
NP-complete. Similarly, if any ]P problem can be reduced to R via a polynomial-time
computable function, then R is called ]P-hard; if R is also in the ]P class itself, it is
]P-complete.

As was noted before, some easy decision problems may have ]P-complete counting
equivalents. The first such problem that was studied, counting the perfect matchings
of a graph, was proved to be ]P-complete[19], even though the decision problem is in
P. The time complexity of finding one perfect matching is O(|V E|), where V is the set
of vertices and E the set of edges. The same goes for the problem of counting Euler
Tours - even though finding one tour is O(|E|), to count all tours is a ]P-complete
problem.[2]

A decision problem can be treated as a subcase of a counting problem, so NP is in-
cluded in ]P and it is believed that ]P-complete problems are even more computa-
tionally difficult than NP-complete ones. We do not expect to find a polynomial time
algorithm for a ]P-complete problem, since that would imply that P = NP. However,
Jerrum, Valiant and Vazirani [12] have discovered that for any ]P self-reducible prob-
lem we can either find a polynomial approximation algorithm or the problem cannot
be approximated at all in polynomial time. Specifically, we are looking for polynomial
time algorithms that, using randomness, produce an estimate that is sufficiently close
to the real answer. This is formally defined as:

Definition 7. [12] Let Σ be a finite alphabet and let f : Σ∗→ N be a counting problem
on Σ. A randomised approximation scheme for f with confidence parameter δ is a
randomised algorithm that takes as input an instance x ∈ Σ∗ and an error parameter ε,
and outputs a number N ∈ N (this is a random variable of the “coin tosses” made by
the algorithm),

P[(1− ε) f (x)≤ N ≤ (1+ ε) f (x)]≥ 1−δ.

We call this a fully polynomial randomised approximation scheme, or a FPRAS, if the
algorithm runs in time bounded by a polynomial in |x|,ε−1 and log(δ−1), for every
instance x.

Jerrum, Valiant and Vazirani [12] have found that for self-reducible relations build-
ing an approximate counter FPRAS is equivalent to building an approximate sampler
FPAUS. There are obvious differences between counting and sampling, but using two
algorithms the two tasks become connected.
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2.3 Markov Chains

In many areas, such as statistical physics and combinatorial optimization, the Markov
Chain Monte Carlo method has proved to be really useful in finding a FPRAS for
computationally difficult problems when other approaches have failed. For example,
the monomer-dimer problem, a classical problem from physics, could only be tackled
using this approach[11]. Formally, a Markov Chain is defined as:

Definition 8. A discrete-time Markov chain M with finite state space Ω is a stochastic
process (Xt)t≥0, with Xt ∈Ω for all t = 1,2, ..., that satisfies the Markov property:

P[Xt+1 = y|Xt = xt ,Xt−1 = xt−1...X0 = x0] = P[Xt+1 = y|Xt = xt ].

We can define a Markov chain by its transition probability matrix P:

P(x,y) = P[Xt+1 = y|Xt = x] ∀x,y,∈Ω.

More commonly, especially when |Ω| is exponential in its description we give a “rule”
for making transitions instead of a matrix.

Now we describe the Markov Chain Monte Carlo technique. The goal is to try to
estimate the cardinality of a very large given set of combinatorial structures, call it
Ω. The Markov Chain helps sample at random an element of this set according to a
uniform probability distribution π on Ω. If we choose the chain to be ergodic, meaning
that the distribution over Ω asymptotically converges to π, and if we simulate the chain
for enough steps, we are sure that the sample will be from a probability distribution
sufficiently close to π. In order for the algorithm to be efficient, a small number of
steps should be needed (where by small we mean polynomial in the size of the input);
if this is the case we say that the Markov chain is rapidly mixing. Therefore, three
properties of the Markov chain are required to find a reliable approximation: having
the correct stationary distribution, ergodicity, and rapid mixing time, all of which are
defined below:

Definition 9. Let M be a time-homogeneous Markov chain with state space Ω and
transition probability matrix P. A distribution π : Ω→ [0,1] is called a stationary dis-
tribution of M if

∑
x∈Ω

π(x)P(x,y) = π(y) ∀y ∈Ω.

Definition 10. Let M be a time-homogeneous Markov chain with state space Ω and
transition probability matrix P. M is said to be ergodic if it is aperiodic and irreducible,
where those concepts are defined as:

M is aperiodic if ∀x ∈Ω, gcd{t : Pt(x,x) > 0} = 1;

M is irreducible if∀x,y ∈Ω , ∃t such that Pt(x,y) > 0.

To sample from the stationary distribution of M we need to run the chain for an infinite
number of steps. Since this is impossible, we will have to choose a sufficiently large
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number of steps such that we know the distribution is “close enough” to the station-
ary distribution. Formally, to know for how long we need to run the chain before it
converges, we need to compute the “mixing time” of the chain.

Definition 11. Let M be a finite, discrete time Markov chain with state space Ω. For
ε > 0, the mixing time of M from initial state x ∈Ω,τx(ε), is defined as

τx(ε) = min{t : ||Pt(x, ·)−π||TV ≤ ε}.
We define the mixing time of M , τ(ε), to be the maximum over the mixing times from
each state:

τ(ε) = sup
x∈Ω

τx(ε).

Definition 12. A Markov chain M on state space Ω is said to be rapidly mixing if, for
all initial states x ∈ ω and all ε > 0,τx(ε) is bounded above by some function which
is polynomial in |x| . A Markov chain is said to be torpidly mixing if there exist some
ε > 0 and x ∈ ω for which τx(ε) is bounded below by some function exponential in |x|.

To prove how Markov Chain Monte Carlo simulation works, we have chosen to illus-
trate an example described by Jerrum and Sinclair [11], namely the knapsack problem.
We will use the same problem later to illustrate how to sample an object of the state
space uniformly at random.

Suppose we are given a vector a = (a1,a2, . . . ,an), where ai ∈ N and a value b ∈ N.
The counting problem is to find the number of vectors x = (x1,x2, . . . ,xn), where each
xi can be either 0 or 1, such that a ·x≤ b. The state space Ω is the set of solutions, that
is the set of vectors x which make the above equality correct.

There exists a naive Monte Carlo simulation for this problem, but it is very inefficient.
Instead, we will consider the following approach: suppose we are at some state x of
the chain, a solution of the form x = (x1,x2, . . . ,xn); we will either remain there with
probability 1

2 or otherwise, with probability 1
2 we select an xi uniformly at random and

go to the state x = (x1,x2, . . . ,(1−xi), . . . ,xn) if it is a solution to the knapsack problem
(otherwise remain in the same state).

The Markov Chain defined this way is ergodic and the stationary distribution is uni-
formly distributed over Ω. We can find a FPRAS that approximates the number of
solutions by expressing |Ω| as a product of smaller factors, and approximating each of
them with Monte Carlo simulations [11]. We should note though that this method runs
in polynomial time only if we can prove that the Markov Chain associated is ”rapidly
mixed”.

To decide if the Markov Chain we are interested in is “rapidly mixing”, we study
its conductance - informally, a large conductance means there is no “blockage” in the
chain, which means it has a fast mixing time. Because calculating this quantity directly
involves the whole state space Ω and considering all its subsets, we will instead use
a technique called “canonical paths” to study the conductance of the chain. We will
formally define these notions below, after which we will present the specific Markov
Chain of Euler Tours we studied, describing the combinatorial structures involved and
how the transitions between states are performed.
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2.3.1 Conductance

As mentioned earlier, we wish to experimentally study the conductance of the Markov
Chain in order to gain insight in whether it may be rapidly mixing. Let M = (Ω,P)
be a discrete state, time-homogeneous, Markov chain with stationary distribution π,
where Ω is the state space of the chain.

Definition 13. [11] For any non-empty subset S ⊂ Ω the conductance Φ(S) of S is
defined to be

Φ(S) =
∑x∈S,y∈Ω\S π(x)P(x,y)

π(S)
.

Then the conductance of M is the minimum over all sets:

Φ(M) = min
S⊂Ω

0<π(S)≤1/2

Φ(S).

For a particular subset S of the state space, we can think of Φ(S) as the “jumping out”
probability corresponding to that set - a low value would be an indicator of a blockage
in the chain. To show this, Jerrum and Sinclair have proved the following theorem:

Theorem 1. [11] Let M = (Ω,P) be a time-homogeneous, reversible Markov chain
and suppose P(x,x)≥ 1/2 for all x∈Ω. Then, the mixing time, τ(ε), and conductance,
Φ(M ) , satisfy

1. For all x ∈Ω, τx(ε)≤ 2
Φ(M )(log(ε−1 + log(π(x)−1)));

2. maxx∈Ωτx(ε)≥ 1−2Ω(M )
eΩ(M ) log(ε−2).

Therefore, to prove that our chain is rapidly mixing we would need to show that 1/Φ is
bounded above by a polynomial in n. The usual way to prove bounds on conductance is
via the “canonical paths” technique, which requires paths with certain global properties
to be defined for every pair in Ω×Ω. This option was explored by Tetali and Vempala
[18], but there were found some errors in their proof [10]. We modified their approach
hoping to get insight into whether the Markov Chain may be rapidly mixing.

2.3.2 Canonical paths

A path γxy is described in [11] as a sequence of transitions that takes us from a start
state x of the Markov Chain M to a final state y. In the “canonical paths method” we
define a canonical path γxy for every pair in Ω×Ω. Given this definition, let Γ = {γxy}
be the set of paths from any x to any y and let E denote the set of edges of the state
space. To prove the rapid mixing time we would need to choose a collection Γ that
achieves a good loading. We measure the loading by:

ρ̄ = ρ̄(Γ) = max
e

1
Q(e) ∑

γxy3e
π(x)π(y)|γxy|,
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where γxy denotes the path from x to y, |γxy| is the length of the path, Q(x,y) = π(x) ·
P(x→ y) = π(y) ·P(y→ x) and the maximum is over the edges of the state space graph.

In order for a Markov chain to be rapidly mixing, it needs to have no “bottlenecks” -
there should be a set of paths Γ such that ρ(Γ) is not too big. One thing that is believed
to lead to a good edge loading is choosing the paths in a “canonical” way. Sinclair
formalized this in the following way:

Proposition. [17] Let M be a finite, reversible, ergodic Markov chain with loop prob-
abilities P(x,x) ≥ 1

2 for all states x. Let Γ be a set of canonical paths with maximum
edge loading ρ̄ = ρ̄(Γ). Then the mixing time of M satisfies

τx(ε)≤ ρ̄(lnπ(x)−1 + lnε
−1),

for any choice of initial state x.

Jerrum and Sinclair [11] give an example of the usage of the canonical paths method by
proving that the Markov Chain induced by a random walk on the hypercube is rapidly
mixing. However, in general, finding a collection of good paths is particularly hard
- ρ̄ depends on the size of the state space, which is the quantity we were trying to
estimate in the first place. To overcome this, the canonical paths method usually uses
a quasi-injective map that avoids explicitly counting the elements of the state space.

We have used the canonical paths technique to study the mixing time of the Markov
Chain with the state space Euler Tours of grids (the combinatorial structures we will
discuss next), whose transitions are local transformations at vertices, named “Kotzig
moves”. Throughout the rest of the report we will refer to this chain as the “Kotzig
Chain”. In our approach we followed:

• First we sampled a subset of Euler Tours for the (2× n) and (3× n) grids with
small n, from which we picked pairs at random.

• Then we have built paths in an ordered fashion using Kotzig moves for each pair
of tours.

• We counted the number of times each edge of the state space graph that was used
in some path.

In the next two sections we will give details about the specific structures we have built
the paths on and how each transition was realised.

2.4 The Kotzig Chain

2.4.1 Grids and Transition Systems

The type of graphs we will be working with is the toroidal grid, defined below.
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Definition 14. The m× n toroidal grid, denoted G(m,n), is the 4-regular graph with
vertex set {(i, j) : 0 ≤ i < m,0 ≤ j < n} and edges joining each (i, j) to (i, j± 1 mod
n) and to (i±1 mod m, j).

Figure 2.1: G(2,4)

A very convenient way to represent Euler Tours, suggested in [1] and [14], is to enu-
merate each pairing of edges visited at each vertex - the pair being formed of the
“entry” edge and the “exit” edge that are visited consecutively in the tour.

Definition 15. [18] Let V = {v1, ...,vn} be the set of vertices of G = (V,E). Then a
transition system T of G is defined as T = {T (v1), ...,T (vn)}, where T (vi) is an arbi-
trary pairing of the edges incident at vi. By a pairing of edges we mean a partitioning
of edges incident at a vertex into (unordered) pairs of edges. By a transition we mean
a pair of edges in the transition system.

Each transition system T splits the grid into a set of cycles; if there is only one cycle,
then that is the Euler Tour defined by T . It is not always the case that there is one single
cycle in the decomposition, therefore not all transition systems yield an Euler Tour.

2.4.2 Kotzig moves on the grid

In [1], Kotzig and Abrham have shown that in order to transform one Euler Tour of a
graph into a different one, all is needed is a finite set of simple local transformations -
called κ-transformations.

Definition 16. Let G = (V,E) be an Eulerian graph and let T be an Euler Tour of G.
Say the sequence of edges visited by the tour at a vertex v is ...e(v) f ...e′(v) f ′.... Then
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a κ-transformation will change this sequence to ...e(v)e′... f (v) f ′... which corresponds
to a different Euler Tour of the graph G.

Graphically, this could be represented as:

v

e f

e’f’
v

e

e’

f

f’

κ-transformation

Kotzig and Abrham [1] introduce the notions of allowed and prohibited transitions,
that are also used by Tetali and Vempala [18]:

Definition 17. Given two transition systems T ,T ′, we use T ⇒v T ′ to denote that
we can transform T (v) into T ′(v) by a κ-transformation at v and call this an allowed
transition; to denote the contrary, we use T 6⇒v T ′, and call it a prohibited transition.

On a 4-regular graph, for each of the 3 possible pairings at a vertex, there is only one
possible κ-transformation and it corresponds to an allowed transition; the other pairing
corresponds to a prohibited transition.

2.4.3 The Chain

We can now describe the Markov chain defined by Tetali and Vempala [18]. The state
space is the set of Euler Tours of a graph and the transitions are κ-transformations.
More precisely, the steps are:

1. Choose an arbitrary Euler Tour of the graph G = (V,E).

2. From the set of vertices V pick one uniformly at random.

3. With probability 1/2 make the only possible κ-transformation at v and with the
remaining probability do nothing.

The chain is ergodic and it converges to the uniform distribution of the set of Euler
Tours [3], but it has not been proved to be rapidly mixing. As Jerrum observed[10],
Tetali and Vempala’s attempt to prove that the Kotzig Chain is rapidly mixing has
failed because they have assumed the paths have a series of global properties which do
not actually hold. Researchers in Markov Chains have attempted to fix their proof but
without success, because of the complexity of the structures involved. More details on
their approach and why it did not work will be given in Section 4.2. We are hoping
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that by choosing a different way to build the paths (which will be presented in Section
4) we will achieve a good edge loading that would suggest the Kotzig Chain may be
rapidly mixing.



Chapter 3

Sampling Euler Tours of low height
grids

In order to study the Kotzig Chain we need to have a big set of Euler Tours from which
we can pick the pairs of tours that will give us the paths. In general, we do not have
an algorithm to uniformly sample Euler Tours. However, in the case of low height
toroidal grids we can exactly count the number of Euler Tours as shown by Creed for
the 2×n and 3×n grids [?].

To sample Euler Tours we have used a dynamic programming approach similar to
Dyer’s algorithm for sampling knapsack solutions [6]. The first stage is to build a table
iteratively, at each step adding the number of paths corresponding to some cycle de-
composition of tours. Golin et al. [7] argue that, by using the transfer matrix approach
(which will be presented in the first section), one could find the number of certain com-
binatorial structures on some types of graphs. Creed [3] has used this to show how to
compute in theory the number of tours of toroidal grids and applied it to small (2×n)
and (3×n) grids. We have also used the transfer matrix technique to build the dynamic
programming table for sampling (2× n) and (3× n) grids. In the first section of the
chapter we gave details of the approach and described how Creed has found the exact
form of the matrix in order to compute the number of Euler Tours of grids. Because his
presentation for the (2×n) and (3×n) grids is succinct and missing quite a few steps,
we have decided to include in the second section all the details of the matrix computa-
tion, also referring to our implementation. After that, we described how the dynamic
programming table is built and how the sampling works, and in the last section we
show all the steps of the approach with the help of an example.

3.1 The transfer matrix approach

Golin et al. [7] made the observation that in grids, cylinders and toruses with fixed
height, a collection of graph structures (e.g., spanning trees, Hamiltonian cycles, inde-
pendent sets, acyclic orientations) should be partitionable in terms of the configuration
on the left and right columns. Moreover, the counts of such structures can probably

14
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be built up inductively as columns are added. For an appropriate transfer matrix A and
corresponding row vectors x and y the computation should be achievable as

|ET (G(m,n))|=~xAn~yT .

Creed [3] has taken further steps in this direction by defining and showing how the
transfer matrix for Euler Tours on the toroidal grid can be computed in the general
case and providing the exact expressions for the (2× n) and (3× n) grids. In the
following sections we will explain how the inductive construction is done and how it
is used to compute the number of tours. After that we will describe how to find the
appropriate transfer matrix based on Creed’s work.

3.1.1 Inductive approach

Before showing why the above formula works we will first define a few useful notions.

Definition 18. A transition system T of an Eulerian graph G = (V,E) at a vertex v is a
decomposition of the set of edges incident with v into pairs. A transition system of G
is a function T that maps each v to a transition system at v.

Each transition system T splits the grid into a set of cycles; if there is only one cycle,
then that is the Euler Tour defined by T. Obviously it is not always the case that there
is one single cycle in the decomposition, therefore not all transition systems yield an
Euler Tour.

Definition 19. A partial transition system is a transition system defined on

Vk = {(i, j) : 0≤ i≤ m−1,0≤ j ≤ k−1},V0 = /0.

If such a partial transition system can be extended to a transition system on G that
defines an Euler Tour, then it is a legal partial transition system.

Definition 20. Let P (m) be the set of perfect matchings on

{li,ri,k|0≤ i≤ m−1,1≤ k ≤ n},

where li = {(i,0),(i,n−1)},ri,k = {(i,k−1),(i,k)}, for each 0≤ i≤m−1 and a fixed
1≤ k ≤ n.

A more correct notation would be P (m,k), where we also parametrize with respect to
k, but considering that all P (m,k) are isomorphic for a fixed m and all k, a simpler
notation was chosen.

Definition 21. To each legal partial transition system T on G we assign a class C ∈
P (m), where the edges in C correspond to the endpoints of the paths in the decompo-
sition of Vk induced by T .
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The transfer matrix A is defined such that each cell A(C,C′), with C,C′ ∈ P (m) will
contain the number of legal partial transition systems on Vk+1\Vk = {(i,k) : 0 ≤ i ≤
m− 1} which extend a transition system on Vk with class C to a transition system on
Vk+1 with class C′. Then A is a P(2m)×P(2m) matrix, where P(2m) is the number of
perfect matchings on K2m, the complete graph with 2m vertices. It is easy to see that
the number of transition systems doesn’t depend on k.

In a similar fashion with the structure of Golin’s [7] transfer matrix, A is block diago-
nalizable “with very special blocks” (many of which are 0-blocks in the 2×n and 3×n
cases), which “reduces the size of its characteristic polynomial”, making computation
less difficult.

It is useful to consider Vk because it allows a recursive construction of the grid (as
in Golin et. al [7]) - we can extend G(m,n) to G(m,N) (with m fixed, N > n) by
separating the first and last columns and keeping the edges attached only to the first
column, adding columns at the end of the graph until we reach length N and reattaching
the connecting edges between the first column and the new last column. This also
gives intuition into why the transfer matrix A needs to be raised to the nth power in
the expression for the total number of Euler Tours. If the cell A(C,C′) contains the
number of transition systems on Vk+1\Vk (which connects a configuration with class C
on k columns to a configuration with class C′ on k+1 columns), then the corresponding
cell in As will represent the number of transition systems on Vk+s\Vk, where s is any
positive integer. To prove this inductively consider the p = P(2m) classes of transition
systems: C1,C2, ...,Cp. A(Ci,C j) will give the number of transition systems from Ci to
C j for only one column; when adding another column we need to consider all possible
combinations that can get us from Ci to C j: transform Ci to Cw and Cw to C j for 1 ≤
m ≤ p which can be done in A(Ci,Cw)×A(Cw,C j) ways. If we choose w to be each
number from 1 to p, we get that the number of transitions on the two columns is:

p

∑
w=1

A(Ci,Cw) ·A(Cw,C j),

which is just the product between row i and column j from A. Doing the same for all
i’s and j’s we obtain that the transfer matrix for two columns is just A2. Obviously,
the proof is the same if we add a column to k columns, where k is any positive integer
less than n. Therefore, An will give the number of transition systems on the subgraph
induced by Vn\V0, which looks exactly like G(m,n) after we merge the edges attached
exclusively to the first column with the ones attached only to the last column.

Now come into play the row vectors x and y from the expression of |ET (G(m,n))| =
~xAn~yT . To make sure we connect the right edges, we only consider the row in A
corresponding to the class of transitions that uses all the horizontal edges; this means
that x(C) = 1 only for that class C that contains li,ri,n−1 for all 0 ≤ i ≤ m− 1. This
assures that all rows in G(m,n) will get connected again. Moreover, we only need
to consider those classes that will make a complete cycle, so we set y(C) = 1 only if
identifying li with ri will give rise to a cycle.

With A,x,y defined in this way, we now need to show how to find the number of
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transitions for each pair of classes.

3.1.2 Computing the transfer matrix

To explain how the values in the transfer matrix are computed, we will start by looking
at an example. Consider the G(2,n) grid with its 3 possible classes of transition sys-
tems: [l0r0], [l0r1], [l0l1]. Say the transition system on Vk (the first k columns) has class
[l0,r1]:

l0 r0,1 l0r0,k−1

r1,kl1 r1,1 r1,k−1

r0,k

l1

Figure 3.1: T S(Vk) with class [l0,r1]

and we wanted the partial transition system on Vk+1 to have class [l0,r0]. One pairing
of the edges that would satisfy this is, for example:

r0,k

r1,k+1r1,k

r0,k+1

Identifying the corresponding edges we now have that the transition system of Vk+1 is
[l0,r0]:

l0 r0,1 l0r0,k−1

r1,k

r0,k+1

l1 r1,1 r1,k

r0,k

l1r1,k+1

Figure 3.2: T S(Vk+1) with class l0,r0

In general, Creed observes that the only illegal transition system (ie. not extendable
to an Euler Tour of the whole grid) on Vk+1\Vk is the one which gives the full cycle
formed by the vertical edges on column k [3]. He then proceeds to classify the two
possible types of pairings between edges, which helps define the set of matchings
corresponding to transition systems on a particular column. Whenever we add the
pairings of the vertices of a column, we identify the edges on the right of the vertices
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of the previous column with the edges on the left of the vertices on the current column.
This process will either give us a cycle or a set of two paths; since having a cycle means
we will not be able to build an Euler Tour, we must only count those pairings that give
two paths and also form the right transition system.

By choosing an arbitrary matching on {ri,k,ri,k+1|0 ≤ i ≤ m−1} for some k we need
to consider the transition systems that yield this particular matching. Note that we can
decompose the cycle (0,1, ...,m−1) into either a set of paths with disjoint edges or a
single cycle. In each case the number of transition systems will be a sum of any of the
elements in the set {0,1,2,2m}.

3.2 The Number of tours of the (2×n) and (3×n) Grids

Creed [3] gives the transfer matrices and the corresponding row vectors x and y for the
(2× n) and (3× n) grids, but with no details of how those values were found. This
section aims to fill in those gaps, which will be helpful for explaining the sampling
algorithm and its implementation.

3.2.1 (2×n) Grid

In the 2×n case the only classes are: [l0,r0,k], [l0,r1,k], [l0, l1] (3 classes, which corre-
sponds to the number of perfect matchings on the complete graph with 6 vertices).

The matrix A will therefore be a 3×3 matrix:

[l0,r0] [l0,r1] [l0, l1]
[l0,r0] 4 2 2
[l0,r1] 2 4 2
[l0, l1] 0 0 6

If we would like to work out, for example, the value A([l0,r0], [l0,r0]), we need to
consider the following transition system:

l0 l0r0,k−1

l1 r1,k−1 l1

Figure 3.3: Class [l0,r0]

and think of how we can achieve this:
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l0 l0r0,k−1 r0,k

l1 r1,k−1 l1r1,k

Figure 3.4: Class [l0,r0]

There are 4 possible ways to do this - the edges corresponding to the vertices on the
k-th column can be paired in any of the following ways:

where by arrows we indicate which vertical edge pairs with which horizontal edge.

The value in any A(C,C′) cell is the number of different pairings induced by one or
more classes of transition systems on a column of the grid. With this in mind, we
have built a transition table, in which we take a note of the classes of partial transition
systems that allow the transformation from C to C′. This transition table is:

[l0,r0] [l0,r1] [l0, l1]
[l0,r0] [l0,r0] [l0,r1] [l0, l1]
[l0,r1] [l0,r1] [l0,r0] [l0, l1]
[l0, l1] − − [l0,r0] and [l0,r1]

To see why this works, we will represent, inspired by Creed’s notation, each of the
classes by:

[l0,r0] [l0,r1] [l0, l1]

Then, starting with [l0,r0], we can obtain the following classes:

[l0,r0]+ [l0,r0]→ [l0,r0] [l0,r0]+ [l0,r1]→ [l0,r1] [l0,r0]+ [l0, l1]→ [l0, l1]

Similarly, starting with [l0,r1]:
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[l0,r1]+ [l0,r0]→ [l0,r1] [l0,r1]+ [l0,r1]→ [l0,r0] [l0,r1]+ [l0, l1]→ [l0, l1]

If the transition class of a partial transition system is [l0, l1], the class of the transition
system of any of the following subgrids will also be [l0, l1], so any of the other classes
cannot subsequently be reached.

[l0, l1]+ [l0,r0]→ [l0, l1] [l0, l1]+ [l0,r1]→ [l0, l1]

(So [l0,r1]+[l0,r0]→ [l0,r1] means that in the transition table ([l0,r1], [l0,r1])= [l0,r0].)

From these, the above transition table follows immediately. Now we need to find
the actual pairings for all the classes. We will then substitute the class in the transition
table with the number of pairings corresponding to that class in order to get the transfer
matrix.

For l0,r0 the 4 corresponding partial transition systems are:

For [l0,r1] the 2 corresponding transition systems are:

For l0, l1 the 2 corresponding transition systems are:

Note that the two graphs:



Chapter 3. Sampling Euler Tours of low height grids 21

mean different things. The first graph represents a class of transition systems and the
other is one partial transition system corresponding to that class.

We then obtain A by filling in the corresponding number of pairings given by the tran-
sition table.

[l0,r0] [l0,r1] [l0, l1]
[l0,r0] [l0,r0] [l0,r1] [l0, l1]
[l0,r1] [l0,r1] [l0,r0] [l0, l1]
[l0, l1] − − [l0,r0] and [l0,r1]

→

[l0,r0] [l0,r1] [l0, l1]
[l0,r0] 4 2 2
[l0,r1] 2 4 2
[l0, l1] 0 0 6

To find the vector x for the G(2,n) grid, remember that x(C) = 1 if [li,ri] ∈ C for all
i and x(C) = 0 otherwise. In this case the transition classes are [l0,r0], [l0,r1], [l0, l1],
therefore only x([l0,r0]) = 1, which gives x = (1,0,0). For y, y(C) = 1 if identifying li
with ri in C gives rise to a single m-cycle and y(C) = 0 otherwise. Hence y([l0,r1]) = 1
and y([l0, l1]) = 1, which gives y = (0,1,1). Carrying out the calculations we find out
that the number of tours of the (2×n) grid is (2n+3)6n−1−2n−1.

3.2.2 (3×n) Grid

In a similar way we can find the number of Euler Tours of the 3×n grid. Considering
the number of transition system of all the 15 possible classes (corresponding to the
15 perfect matching of the K6 complete graph), Creed [3] builds the transfer matrix,
that, as Golin et al. [7] suggested it should, has a “specific structure” [8], e.g. block
diagonalizable with very special blocks. The matrix given by Creed is:


A1 B1 C1 C1 C1
B1 A1 C1 C1 C1
0 0 D1 0 0
0 0 0 D1 0
0 0 0 0 D1


where A1 = 5I3 +J3, B1 = 2J3, C1 = I3 +J3 and D1 = 2I3 +6J3 (I3 is the 3×3 identity
matrix and J3 is the 3×3 matrix in which all entries are 1).

However, while implementing the sampling algorithm, we realized that some of the
entries in this matrix should be different. The top right 6×9 submatrix (corresponding
to the 6 blocks of C1) should be instead:

2 1 1 2 1 1 2 1 1
1 1 2 1 1 2 1 2 1
1 2 1 1 2 1 1 1 2
2 1 1 1 2 1 1 2 1
1 1 2 2 1 1 1 1 2
1 2 1 1 1 2 2 1 1
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and also D1 = 3I3 +5J3. The values in D1 are not very concerning because D1 is still
symmetrical and we know it would not “break” A’s block structure, but we could not
be sure if the same would happen for the top right 6×9 matrix.

We initially assumed that changing the order of the classes in this matrix would even-
tually lead to the nice form presented by Creed. It turns out that no matter how we
would shuffle the rows and columns, obtaining that form is impossible, because the
two submatrices have different ranks. However, the block structure is preserved when
raising the matrix to a power, which is what we are concerned with.

Let C1 =

 2 1 1
1 2 1
1 1 2

, C∗1 =

 2 1 1
1 1 2
1 2 1

, C∗∗1 =

 1 2 1
1 1 1
1 1 2

 and As be the ma-

trix with the shuffled order:

As =


A1 B1 C∗1 C∗1 C1
B1 A1 C∗1 C∗∗1 C∗1
0 0 D1 0 0
0 0 0 D1 0
0 0 0 0 D1


We will prove at the end of this section that we can still use the transfer matrix method,
even though the matrix does not have the typical structure. For now, we will use the
new matrix and show how some of the entries were computed.

There are 15 perfect matchings on K6, the complete graph with 6 vertices, therefore
there are 15 transition classes for the (3,n) grid:

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15
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As before, we search for all the classes that can make the transition from one class to
another. We will give more details for the A1 matrix, which looks at classes [1],[2] and
[3]:

[1]+ [1]→ [1] [1]+ [2]→ [2] [1]+ [3]→ [3]

[2]+ [3]→ [1] [2]+ [1]→ [2] [2]+ [2]→ [3]

[3]+ [2]→ [1] [3]+ [3]→ [2] [3]+ [1]→ [3]

This gives us the transition table for A1:

Class 1 2 3
1 1 2 3
2 3 1 2
3 2 3 1

After this, we had to find all the possible transition systems corresponding to each
transition class.

Class [1] - 6 transition systems:

Class [2] - 1 transition system:
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Class [3] - 1 transition system:

Substituting the appropriate values in the above transition table we get A1, as given by
Creed:

A1 =

 6 1 1
1 6 1
1 1 6

 .

We went through the same steps for all the other submatrices of the transfer matrix A.
The associated transition table is:

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 3 1 2 5 6 4 15 14 13 8 9 7 11 10 12
3 2 3 1 6 4 5 12 10 11 14 13 15 9 8 7
4 4 5 6 1 2 3 7 8 9 14 13 15 11 10 12
5 5 6 4 3 1 2 15 14 13 10 11 12 9 8 7
6 6 4 5 2 3 1 12 10 11 8 9 7 13 14 15
7 − − − − − − 4,1 3,6 2,5 − − − − − −
8 − − − − − − 2,6 5,1 3,4 − − − − − −
9 − − − − − − 3,5 2,4 6,1 − − − − − −
10 − − − − − − − − − 5,1 3,4 2,6 − − −
11 − − − − − − − − − 2,4 6,1 3,5 − − −
12 − − − − − − − − − 3,6 2,5 4,1 − − −
13 − − − − − − − − − − − − 6,1 2,4 3,5
14 − − − − − − − − − − − − 3,4 5,1 2,6
15 − − − − − − − − − − − − 2,5 3,6 4,1

and substituting the classes in this table with the number of transition systems in each
corresponding class (or pair of classes when there is more than one) we obtain the
modified version of the transfer matrix.

3.2.2.1 The Shuffled Transfer Matrix

We will prove by induction that An and An
s have the same values, but in the shuffled

order. Remember that A and As have the following forms:
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A =


A1 B1 C1 C1 C1
B1 A1 C1 C1 C1
0 0 D1 0 0
0 0 0 D1 0
0 0 0 0 D1

 As =


A1 B1 C∗1 C∗1 C1
B1 A1 C∗1 C∗∗1 C∗1
0 0 D1 0 0
0 0 0 D1 0
0 0 0 0 D1


It is not too difficult to see that An is:

An =


An Bn Cn Cn Cn
Bn An Cn Cn Cn
0 0 Dn 0 0
0 0 0 Dn 0
0 0 0 0 Dn


where

(
A1 B1
B1 A1

)n

=
(

An Bn
Bn An

)
, Dn

1 = Dn and Cn = A1Cn−1 +B1Cn−1 +Dn−1C1.

Suppose that An
s is:

An
s =


An Bn C∗n C∗n Cn
Bn An C∗n C∗∗n C∗n
0 0 Dn 0 0
0 0 0 Dn 0
0 0 0 0 Dn

 ,

where C∗n and C∗∗n have the same entries as Cn but in the order given by C∗1 and C∗∗1

respectively. For example, if Cn =

 c′n cn cn
cn c′n cn
cn cn c′n

 then C∗n =

 c′n cn cn
cn cn c′n
cn c′n cn

.

Clearly, the left 6×6 submatrix in An+1
s will be:(

A1 B1
B1 A1

)n+1

=
(

An+1 Bn+1
Bn+1 An+1

)
and the bottom right 9×9 one: D1 0 0

0 D1 0
0 0 D1

n+1

=

 Dn+1 0 0
0 Dn+1 0
0 0 Dn+1

 ,

so the same as in An+1.

The entries in the 6×9 top right submatrix will be given by:

(
A1C∗n +B1C∗n +DnC∗1 A1C∗n +B1C∗∗n +DnC∗1 A1Cn +B1C∗n +C1Dn
B1C∗n +A1C∗n +C∗1Dn B1C∗n +A1C∗∗n +DnC∗∗1 B1Cn +A1C∗n +DnC∗1

)
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Because B1 = 2J3, then B1Cn = B1C∗n = B1C∗∗n . We also have that A1Cn + B1Cn +
C1Dn = Cn+1, so we can conclude that:

A1Cn +B1C∗n +C1Dn = Cn+1
A1C∗n +B1C∗n +DnC∗1 = A1C∗n +B1C∗∗n +DnC∗1 =
B1C∗n +A1C∗n +C∗1Dn = B1Cn +A1C∗n +DnC∗1

We can also see that B1C∗n +A1C∗∗n +DnC∗∗1 = C∗∗n+1 and B1Cn +A1C∗n +DnC∗1 = C∗n+1
by either carrying out the calculations or by observing that, as before B1Cn = B1C∗n
and also A1Cn has the same entries as A1C∗∗n in the order of C∗∗ and DnC∗∗1 has the
same entries as DnC1, again, in the order of C∗∗ (given that A1 and D1 are of the form
xI3 + yJ3, they both preserve the order). Similarly for the second equality. Therefore,

An+1
s =


An+1 Bn+1 C∗n+1 C∗n+1 Cn+1
Bn+1 An+1 C∗n+1 C∗∗n+1 C∗n+1

0 0 Dn+1 0 0
0 0 0 Dn+1 0
0 0 0 0 Dn+1

 ,

which proves that the block structure is preserved, An+1
s having the same entries as

An+1 but in the fixed different order.

3.3 Generating Euler Tours

In order to sample Euler Tours we have used a technique similar to the one Dyer
used to sample solutions for a variant of the knapsack problem with the purpose of
approximating the total number of solutions[6]. The algorithm is based on building a
dynamic programming table.

3.3.1 Sampling Knapsack solutions

To briefly remind the reader, the knapsack problem is: suppose we are given a vector
a = (a1,a2, . . . ,an), where ai ∈ N and a value b ∈ N. We wish to find the number of
vectors x = (x1,x2, . . . ,xn), where each xi can be either 0 or 1, such that a · x ≤ b. For
the purposes of this section we will only present Dyer’s approach to sample uniformly
one solution of a given instance of the problem.

We denote by S the set of solutions from which we would like to sample uniformly.
Starting from the initial knapsack problem, Dyer considers a different but very sim-
ilar problem for which we can easily (in polynomial time) compute the number of
solutions. We have that

n

∑
j=1

a j · x j ≤ b,
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which we can rewrite as
n

∑
j=1

a jn2

b
· x j ≤ n2.

Let α j =
⌊

a jn2

b

⌋
, and let S′ be the set solutions of

n

∑
j=1

α j · x j ≤ n2,

which has a very similar form to the initial knapsack problem. To build the dynamic
programming table that gives the number of solutions to this problem, Dyer considered
the number of solutions of all its smaller variants:

F(r,s) = |{x|
r

∑
j=1

α j · x j ≤ s2}|.

He then observed that the following recurrence relation holds:

F(r,s) = F(r−1,s)+F(r−1,s−αr),

with the initial condition

F(1,s) =

{
1, if s < α1

2, otherwise.

Using dynamic programming we can tabulate a table with these values in O(n3) time,
and noting that F(n,n2) = |S′|, we have therefore found the number of solutions to the
very similar problem considered. Dyer also proves that 1 ≤ |S|/|S′| ≤ (n + 1), which
means we can use |S′|/

√
n+1 to approximate |S|.

The way we can find a uniform solution S′ is by starting with the (n,n2) cell of the
table and tracing back probabilistically. Knowing that F(n,n2) = F(n−1,n2)+F(n−
1,n2−αn), we can consider F(n−1,n2)

F(n,n2) the probability of xn to be 1 and with the re-

maining probability F(n−1,n2−αn)
F(n,n2) we choose xn to be 0. Depending on which choice

we have made, we either go to the cell F(n−1,n2) or to F(n−1,n2−αn), where we
repeat the process. In this way we will find a vector x = (x1,x2, . . . ,xn) which is in S′

and with probability 1/(n + 1) it is also in S. If x is not in S we start again from cell
F(n,n2).

3.3.2 Dynamic programming approach for sampling Euler Tours

We will now describe how we have built the dynamic programming table that we are
using as support to sample Euler Tours.
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Consider a (m,n) grid and let p = P(2m) where P(2m) is the number of perfect match-
ings on K2m, the complete graph with 2m vertices. Remember from the previous sec-
tion that for grids the following relation holds:

|ET (G(m,n))|=~xAn~yT ,

where A is the p× p transfer matrix for that grid and has size and x and y are two row
vectors of size 1× p.

The dynamic programming table has size p× (n+2), and, similarly to A, x and y each
row corresponds to one of the p transition classes of the grid (see Section 3.1 for more
details about transition classes). We will consider the indexing on the table starts from
1 and not 0. We initialized the table with the values in x - the first column is exactly x.
The next column will contain the values of~x ·A, the following one will be~x ·A2 and so
on until the (n+1)-th column, which will be~x ·An. The last column contains only the
value~x ·An~yT , so the total number of tours. Each of the values in this table corresponds
to the count of certain path cycle decompositions that can create an Euler Tour. To be
more precise, the value on row r and column (c + 1) represents the number of paths
corresponding to a tour in which the transition system on the first c columns of the grid
has class r. At the end we are multiplying by y to make sure we only choose those
paths that can give an Euler Tour.

The recurrence relations used to build the table are:

T (r,c) =


x(r) c = 1

∑
p
i=1 T (i,c−1) ·A(i,r) c > 1,c < n+2

0 c = n+2,r < p

∑
p
i=1 T (i,n+1) · y(i) c = n+2,r = p

so for all columns from 2 to n + 1 in the table T (r,c) is the dot product between the
transpose of the previous column in the table and the r-th column in A, while the other
2 columns are x and a column containing only zeros and the number of tours.

Now that we have built the table, we can trace back probabilistically in the same way
in which Dyer did to find a solution for the knapsack problem.

We obtain an Euler Tour in the following way: start with the bottom right cell, namely
T (p,n + 2), whose value, by the above formula, is ∑

p
i=1 T (i,n + 1) · y(i). With each

step back we choose a cell on the previous column; as we know, the row of the cell
corresponds to a transition class. Therefore, with probability T (i,n+1) ·y(i)/T (p,n+
2) we choose class i for the transition system of the first n columns of the graph.
Suppose we move to cell T (i,n+1), where with probability T ( j,c−1) ·A( j, i)/T (i,n+
1) we choose transition class j for the transition system of the first n−1 columns of the
grid. We continue to do this until we reach the second column of our table, at which
point we stop. We now have n transition classes, with the i-th class being the class of
the transition system of the first i columns.
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1 X X 0
0 X 0
0 X X |ET (G(2,5))|

c1 = C1 c2 = C2 c3 = C1 c4 = C3 c5 = C3

Backtracking on the dynamic programming table
Starting with T (3,7) - the bottom right cell - we went to cell T (3,6) corresponding to class

C3, then to T (3,5), so class C3, then to T (1,4), corresponding to class C1 and so on.

Say the chosen classes are: c1,c2, ...,cn. We need to find the actual pairings of the
edges that give these classes. For each i ≤ n we choose a pairing of the edges of the
vertices on column i that makes the transition from class ci−1 to ci (we consider c0
to be the class that uses all the horizontal edges). The number of possible pairings
for a column i is exactly the value A(ci−1,ci), where A is the transfer matrix. With
probability 1/A(ci−1,ci) we choose one of these pairings. We continue to do this until
we reach the class of the last column.

Once we have the pairings for all the vertices of the grid, we need to put them together
to form the tour.

3.4 Illustrative example

To show the steps of the sampling algorithm we will work through an example. In
general, we represent 2×n grids as:

1

n+1

n 2 n-1

n+2 2n-12n

73

2 6

84

4n-2 1 5

4n-1

4n

4n-3

Figure 3.5: G(2,n)

Observe that a column k is represented by:
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k-1

n+k-1

k

n+k

4k-1

4k

4k-3 4k-2

Figure 3.6: G(2,n)

In code we store the possible pairings of edges as an array where each row corresponds
to a class of transition systems; we enumerate all the possible pairings corresponding
to every class. So for example, for class [l0,r0], the pairings are:
p a i r i n g s [ 0 ] = new i n t [ ] [ ] [ ] [ ]

{{{{ 3 , 1 } , { 2 , 7 }} , {{ 4 , 8 } , { 1 , 2 }}} ,
{{{ 3 , 2 } , { 1 , 7 }} , {{ 4 , 8 } , { 1 , 2 }}} ,
{{{ 3 , 7 } , { 2 , 1 }} , {{ 4 , 2 } , { 1 , 8 }}} ,
{{{ 3 , 7 } , { 1 , 2 }} , {{ 4 , 1 } , { 2 , 8 }}}} ;

where the first set is the pairing of edges for vertex 1 and the second set is the pairing
for vertex n+1. This of course corresponds to the edges on the first column. When we
need to get the pairings for column k we update these values to match the edges of the
vertices on column k. Say we have chosen pairing [0][0] for column 4; then we will up-
date {{3,1},{2,7}},{{4,8},{1,2}} to {{15,13},{14,19}},{{16,20},{13,14}} be-
cause 3 corresponds to edge 4k−1, 1 is in the same position as 4k−3 and so on (if the
grid has exactly 4 columns we need to take each value mod 16).

Suppose we are trying to sample an Euler Tour for the (2,4) grid, which in code is
represented as:

1

5

4 2 3

6 78

7 113

14 2 6 10

8 124

13 1 5 9

15

16

Figure 3.7: G(2,4)
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We first need to build the dynamic programming table. Remember that the transfer
matrix, x and y vectors are:

A =

 4 2 2
2 4 2
0 0 6

 ,x = (1,0,0),y = (0,1,1).

Each row in the table corresponds to a class of transition systems, the first column is
the initialization and the last one gives us the total number of tours (so the 4 in between
correspond to the 4 columns in the grid for which we need to find a transition system
to build the tour). We initialize the table with the x vector:

1
0
0

We multiply this vector by matrix A to get the next column:

1 4
0 2
0 2

We multiply again the last added vector with A:

1 4 20
0 2 16
0 2 24

And so on, until we reach the 5-th column of the table:

1 4 20 112 656
0 2 16 104 640
0 2 24 216 1728

The last step is to multiply the last vector with y:

1 4 20 112 656 0
0 2 16 104 640 0
0 2 24 216 1728 2368

This gives us the completed table and the total number of Euler Tours for G(2,4),
which is 2368.

We start backtracking from the rightmost cell (the one containing the number of Euler
Tours):
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• 2368 was the sum of 640 and 1728; we pick a number between 0 and 2368 and
if it is smaller than 1728 we go to the cell containing 1728, otherwise we go to
the cell containing 640. Suppose the random number we pick is 2000. Then we
backtrack to the cell containing 640; this corresponds to the second transition
class, [l0,r1];

• 640 was the sum of the second column of A and the previous column, so 640 =
112 ·2+104 ·4+216 ·0; we pick a number between 0 and 640; if it is between
0 and 112 · 2 we pick the cell containing 112, if it is between 112 · 2 and 112 ·
2+104 ·4 we pick the one containing 104, otherwise we go to the other one (in
this case there are actually only two choices because 216 has weight 0, so the
probability to pick it is 0); suppose the random number is 114; this means we
pick the first transition class, [l0,r0]

• we continue to do so, until we have reached the second column of the table.

Suppose the transition classes we chose for the 4 columns of the grid are: [l0,r0],
[l0,r1], [l0,r0], [l0,r1].

We now need to choose the class of transition systems for each individual column.

For the first column suppose the previous class was [l0,r0]; looking in the transition
table, we see that the corresponding class for ([l0,r0], [l0,r0]) is [l0,r0] - therefore the
first column will have pairings of edges corresponding to this class. From the 4 possible
pairings we pick one at random. Say the partial transition system for the first column
is:

1

5

4 2 3

6 78

11

14 6 10

12

13 5 9

15

16

1 2

73

4 8

Figure 3.8: G(2,4)

In code this is represented by {{3,1},{2,7}},{{4,8},{1,2}}. The transition system
of the graph is a hashmap where the keys are vertices and the value for each key is the
pairing at that vertex. We add the array {{3,1},{2,7}} with key 1 and {{4,8},{1,2}}
with key 5 to the hashmap.
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Note: Even though there is a one-to-one correspondence between keys and values and
the number of keys is known from the beginning (it is just the number of vertices) the
hashmap was preferred over an array only because it made it easier to obtain the stored
pairings for a certain vertex.

Looking again at the classes of transition systems we choose, which were [l0,r0],
[l0,r1], [l0,r0], [l0,r1], we see that the class of the partial transition system for the
first two columns should be [l0,r1]. Since the previous one was [l0,r0], we look at the
transition table in the cell corresponding to ([l0,r0], [l0,r1]), where we have [l0,r1]. So
we choose one of the 2 possible pairings for the [l0,r1] class. Suppose we choose
pairings [1][1] : {{{3,1},{2,7}},{{1,8},{4,2}}}, which, updated for column 2 is:
{{{7,5},{6,11}},{{5,12},{8,6}}}. So far we have:

1

5

4 2 3

6 78

14 1013 9

15

16

1 2 5

73

124 8

6

11

Figure 3.9: G(2,4)

We add to the transition system hashmap the values {{7,5},{6,11}} with key 2 and
the value {{5,12},{8,6}} for key 6.

The class for the next column will be the one in cell ([l0,r1], [l0,r0]), so [l0,r1] and the
class for the last column will be [l0,r1] again. In the end, one possibility is that the tour
will look like this:
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1
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Figure 3.10: G(2,4)

where 14 and 3 should be paired, which combines the 2 paths into one. The final
transition system is

Vertex
1 3,1 2,7
2 7,6 5,11
3 11,9 10,15
4 15,13 14,3
5 4,8 1,2
6 6,12 8,5
7 9,16 12,10
8 13,4 16,14

Besides the transition system we also have a sequence of edges and vertices representa-
tion that we need in order to build the paths (we will explain in the next chapter why it
is useful). For this we start by initializing an array of size (number of edges)+2(number
of vertices) (which is 4 · n ·m for G(m,n)) with the values 1,1 - we always start with
the edge with index 1 and with the vertex with index 1 to account for tours that are
equivalent under rotation and reversal. To make it easier to distinguish, we will repre-
sent vertices between brackets. Until now the edge vertex sequence is 1(1). Looking
at the vertex (1) in the transition system we see that edge 1 is paired with 3, so we add
this to the edge sequence: 1(1)3. We then look at the neighbours of vertex (1) and
check which ones have edges pairing with 3. In this example the neighbour is (4), with
the pairing {14,3}. We update the edge sequence to: 1(1)3(4)14. We keep doing that
until the array is filled, at which point the sequence is:

1(1)3(4)14(8)16(7)9(3)11(2)5(6)8(5)4(8)13(4)15(3)10(7)12(6)6(2)7(1)2(5).



Chapter 4

Experimental analysis of the mixing
time of the Kotzig Chain

We begin this chapter by reminding the reader of the technique we have used hoping get
some insight into whether the Kotzig chain might be rapidly mixing. In the following
sections we give details of the approach (Section 4.2), pointing to the implementation
(Section 4.3). In the last section we go over an example in order to illustrate the
algorithm.

4.1 Conductance and Canonical Paths

In Section 2.3.2 we discussed the ”canonical paths” technique. To use it, we need to
compute a quantity ρ which measures the edge loading for a set of paths between states
in the state space:

ρ̄ = ρ̄(Γ) = max
e

1
Q(e) ∑

γxy3e
π(x)π(y)|γxy|,

where x and y are states in the state space, Γ is the set of paths, γxy denotes the path
from x to y, |γxy| is the length of the path and the maximum is over the edges of the state
space (for a discussion of paths see Section 2.3.2). x and y must satisfy the detailed
balanced condition

Q(x,y) = π(x) ·P(x→ y) = π(y) ·P(y→ x).

Note that, for Euler Tours, π(x) = |Ω|−1 (we are in the uniform distribution) and P(x→
y) = 1

n (because out of the 3 pairings possible at a vertex one is possible and one is
prohibited, so we can only make one change at a time). Hence we can simplify the
above expression for ρ to:

35
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ρ̄ = ρ̄(Γ) = max
e

n
|Ω| ∑

γxy3e
|γxy|.

As Jerrum and Sinclair observed [11], for the Markov chain to be rapidly mixing it
needs to have no ”bottlenecks” - we need to find a set of paths Γ such that ρ̄(Γ) is not
too big. We experimentally evaluated conductance over a series of randomly generated
paths of Euler Tours, inspired by Tetali and Vempala’s approach[18]. They were trying
to prove that the Kotzig Chain was rapidly mixing, but some of their assumption were
false and the proof could not be fixed. In the next section we will describe in detail how
they built the paths, we will point out the flaws in their proof and present our adapted
experimental set-up.

4.2 Building the paths - Theory

Tetali and Vempala [18] attempted to prove that the Kotzig Chain is rapidly mixing by
using the canonical paths argument due to Jerrum and Sinclair [11] (for a description
of Kotzig moves and the Kotzig Chain please refer back to Section 2.4.2).

Kotzig and Abrham [1] observed that given two randomly sampled tours A and B we
are certain we can build a path from A to B using Kotzig moves and formulated the
following theorem:

Theorem 2. [1] Let A and B be two Euler tours of an Eulerian multigraph G. Then
there exists a finite sequence of κ-transformations at the vertices of G which transforms
A into B.

This proves that the set space is connected, which is needed when trying to sample
from a Markov Chain. However, to prove that the chain is rapidly mixing we need to
find a good set of paths and a rigorous proof of high conductance. Tetali and Vempala
attempted this with no success, but let us show how they built the paths.

The Kotzig moves are local transformations that change the pairing of the edges at a
vertex. Therefore, a useful way to represent Euler tours of the grids is by their tran-
sition systems - for each vertex v of the tour we write the set {{e,e′},{ f , f ′}}, where
e,e′, f , f ′ are the 4 edges incident at vertex v, grouped according to their pairing (for
the definition of a transition system please refer to Section 2.4.1). By this representa-
tion, on one visit the tour enters v at e and leaves at e′ (or vice versa) and on its other
visit it enters along f and leaves along f ′ (or vice versa).

We can easily build the transition system of any tour, hence we can then compare the
pairings of edges at each vertex of any pair of tours A and B and take a note of the
disagreement vertices. By the above theorem, using a number of κ-transformations,
we can fix the transition system at each of the vertices in the disagreement set (where

Note:The content of this section is based on [4].



Chapter 4. Experimental analysis of the mixing time of the Kotzig Chain 37

by ”to fix” we mean to change the pairing of edges at a vertex in A into the same
pairing for that vertex in the final tour B). So every time we make a move at a vertex,
the current Euler Tour is transformed into another, whose transition system differs from
the transition system of the previous tour at exactly one vertex (the one where the move
was performed).

In general, we denote by T S(T,v) the pairing given by the transition system of a tour
T at vertex v. Suppose that the 4 incident edges of the vertex v of an Euler Tour of a
4-regular grid are: e,e′, f , f ′. Then the only 3 possible pairings of the edges at vertex v
are:

1. T S(T,v) = {{e,e′},{ f , f ′}}

2. T S(T,v) = {{e, f},{e′, f ′}}

3. T S(T,v) = {{e, f ′},{e′, f}}.

If one of these pairings is the current pairing at a vertex, out of the two remaining
ones only one can be achieved by a κ-transformation, depending on which order the
edges are visited in the tour. In a edge sequence representation of the tour the pairing
T S(T,v) = {{e,e′},{ f , f ′}} will correspond to one of:

• ...e(v)e′... f (v) f ′..., or the inverse ... f ′(v) f ...e′(v)e...

• ...e(v)e′... f ′(v) f ..., ... f (v) f ′...e′(v)e...

• ...e′(v)e... f (v) f ′..., ... f ′(v) f ...e(v)e′...

• ...e′(v)e... f ′(v) f ..., ... f (v) f ′...e(v)e′....

Let us consider now how and when the moves are performed to build the path from
tour A to tour B. We already know that we can build a set of disagreement vertices
that we wish to fix. Suppose we are trying to fix the vertex v in tour A such that it has
the same pairing as in tour B. Say that T S(A,v) = {{e,e′},{ f , f ′}} and that the edge
sequence is of the form: ...e(v)e′... f (v) f ′.... To fix this vertex we distinguish between
the following cases, which depend on the pairing of v at B and the sequence of edges:

1. T S(B,v)= {{e, f},{e′, f ′}} and the edge sequence at v is either ...e(v) f ...e′(v) f ′...
or ... f ′(v)e′... f (v)e... - to obtain the same pairing in tour A we only need to re-
verse the sequence of edges traversed in between the two visits at vertex v, so
the ones between e′ and f in A; the transition system at all vertices except v will
not change.

2. T S(B,v) = {{e, f},{e′, f ′}} but the edge sequence is none of the ones above or
T S(B,v) = {{e, f ′},{e′, f}} - we will need a helper vertex u that will make the
required κ-transformation available; the transition system will be transformed
to the one of B at no more than 2 vertices (the initial one and the helper) and
otherwise will remain the same.

In the first case we say that the desired move at v is available, while in the second case
the move is prohibited.

The existence of a helper vertex is proved by the following lemma:
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Lemma. [18] Let A and B be two Euler tours of a 4-regular graph G. Suppose T S(A,v) 6=
T S(B,v), and the move at vertex v is not available, then

1. there exists u 6= v such that T S(A,u) 6= T S(B,u), and

2. in at most 3 κ-transformations (on A) we can transform A to A′ so that T S(A′,u) =
T S(B,u), T S(A′,v) = T S(B,v), and T S(A′,w) = T S(A,w), for w 6= u,v.

Proof. Let us argue the first part by contradiction. Suppose the disagreement set is
empty, so the transition system of A is the same as the one of B except at vertex v. But
if A differs from B only at v and the necessary move at v is not allowed, then one of A
and B cannot be an Euler Tour.

For the second part, suppose there exists at least one more vertex that needs to be
fixed. Tetali and Vempala [18] observed that a κ-transformation at a vertex will either
keep the rest of the transition system unchanged or, for a vertex v, it will make the
prohibited pairing allowed - this happens when u and v are interleaved. Suppose that
in our disagreement vertices set there are no vertices that interleave v. This means that
we can fix all of them without changing the transition system at v, which will leave
v the only vertex in the disagreement set - we have already seen this is not possible.
Therefore, there must be at least one vertex in the disagreement set that interleaves v.
If the move at u is available then, because it interleaves v, it will make the prohibited
move at v (the one we needed) available. If the move at u is prohibited, then making
a κ-transformation at v will make the desired move at u available, which in turn will
make the fixing move at v available.

This lemma and its proof tell us a couple of very important things about the helper
vertex u. First, u needs to be part of the disagreement set and by the proof of the
lemma, if a helper is needed there will always be one in this set. Secondly, from the
disagreement vertices we need to choose u such that it interleaves v, the vertex we were
initially trying to fix - without this condition the helper would not be able to actually
help ”unlock” the desired move on v. Once we have identified the helper, there are two
possible situations:

1. the move at u is available - in this case we first make a κ-transformation at u and
then the fixing κ-transformation at v

2. the move at u is prohibited - we first make a κ-transformation at v, which will
allow us to make the κ-transformation at u, which in turn will make the desired
κ-transformation at v available; in the end the new tour will have both u and v
fixed.

Another observation we can make based on the previous lemma is that there may be
many possible paths from a tour A to a tour B. It is true that at any vertex, out of the
two possible moves, only one can actually be carried out if we still want to obtain an
Euler Tour. However, whenever we need a helper vertex we can choose any vertex that
interleaves the vertex to be fixed and is still in the remaining disagreement set, and
depending on which vertex we choose, the next tour may take various forms.
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Tetali and Vempala’s approach was to consider a pairing of the disagreement vertices,
in such a way as to give an order in which vertices would be fixed. Canonical paths
having this fixed ordering have been really useful to prove polynomial bounds on ρ,
so this was a desirable property for Tetali and Vempala’s paths. However, they failed
to consider a couple of things. One would be the above observation - a vertex can
have many possible helpers and a helper may fix multiple vertices. Moreover, we have
seen that making a κ-transformation at some vertex will interchange the allowed and
prohibited transformations for all interleaving vertices; so if any of these needed to
be fixed with a helper, after one transformation they may not need a helper anymore.
Therefore, the relationship between vertices and helpers and the order in which they
propose to carry out the transformations established at the beginning may be changed
after a number of moves.

For these reasons we considered the following changes: we order the vertices by index
and sort the disagreement set according to that order; whenever we need a helper,
choose the one that has the lowest index. Update the transition system and delete the
fixed vertices from the disagreement set, updating the counts of the space state edges
accordingly. The approach is presented in full in the next section.

4.3 Building the paths - The Algorithm

We now discuss what steps we took in building the paths and how we have imple-
mented them. Based on this, an illustrative example will be given in the next section.

Given two tours A and B, the first step is to build the disagreement set and we do this
by comparing the transition system at each vertex in the tours, in order. This will give
us a sorted set of the difference vertices, which we will fix one by one.

As we have seen, in order to check whether a κ-transformation at some vertex is avail-
able, we need to know the order in which edges are visited (Note: an Euler tour does
not have a predefined order, but we will consider the relative order of the 4 edges of a
vertex amongst themselves). For this, besides the transition system representation we
also store the tours as sequences of vertices and edges. Therefore the two representa-
tions we used for tours are:

1. a sequence of edges and vertices of the form : e1,v1,e2,v2, ..., where ei and vi
are the indices of the edges and vertices of the grid; for this purpose we are using
an array in which indices of vertices are stored at odd positions and indices of
edges at even positions. We will always start with vertex 1 and edge 1 to account
for the fact that some tours are equivalent under rotation and reversal;

2. a transition system - for each vertex we write the set {{e,e′},{ f , f ′}} that gives
us the pairings of the edges incident at that vertex. We store this as hashmap with
keys the indices of vertices and values 2×2 arrays where each row corresponds
to a pairing. Even though the hashmap has constant size, we have chosen this
data structure to be able to easily access the pairings, compare and change them.
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Note: The reason why we did not choose a more compact representation - for example
an ordered version of the transition system, where each pairing {{e,e′},{ f , f ′}} is
written according to the order in which the edges e,e′, f , f ′ appear in a tour - is that
making a κ-transformation preserves only the pairings of the other vertices and not
the order in which they are visited. Changing the order in which vertices are visited
also changes the order of the edges, and this influences the available moves for other
vertices. Having vertices and edges written explicitly makes it easier to keep track of
κ-transformations and availability.

Once we have the two representations for each of the two sampled tours we start build-
ing the path. Given the transition systems represented as hashmaps, we iterate through
every key (each representing a vertex of the grid) and check if the associated pairings
of vertices are the same in the two tours, disregarding the order. So we consider the
pairings {{e1,e3},{e2,e7}} and {{e2,e7},{e3,e1}} equivalent, but {{e1,e3},{e2,e7}}
and {{e1,e2},{e3,e7}} different. After iterating through all vertices we have filled the
set of disagreement vertices (represented as a sorted ArrayList) with the indices of all
the vertices where the pairings are different in the two tours. As we build the path
between the two tours we will keep deleting from this set those vertices that have been
fixed after one or more κ-transformations.

At every step in the path we consider the lowest indexed vertex in the disagreement
set, call it v.

• We check whether the κ-transformation at v needed to fix the transition system
is available - which means we are in the case: T S(A,v) = {{e,e′},{ f , f ′}} and
A has edge sequence ...e(v)e′... f (v) f ′..., T S(B,v) = {{e, f},{e′, f ′}} and B has
edge sequence ...e(v) f ...e′(v) f ′.... If so, we reverse everything between e′ and f
in A and change the pairing of v in A to the one in B. We delete the fixed vertex
from the disagreement set and move on to the next one.

• If the κ-transformation is prohibited, we start looking for a helper vertex u. For
this we need to choose the vertex with the smallest index from the disagreement
set that interleaves v in the tour - call this vertex u.

– If the κ-transformation at u is available, we make this transformations (up-
dating the sequence of edges and the transition system) and then make the
κ-transformation at v (again, updatind the sequences of edges and transition
system).

– If the κ-transformation at u is not available, we make the following 3
moves: first make a κ-transformation at v (which is not the one we need
to fix the transition system, but a different one), then check if we can
make the desired κ-transformation at u, after which we make another κ-
transformation at v, this time the one we needed.

With every vertex that is fixed we update the set of disagreement vertices (either by
deleting v or v and u) and also we increase the count for the space states involved in the
κ-transformations. Whenever we make a move at a vertex we transition from one Euler
Tour to another. Normally, we would have to increase the count of each state with a
value corresponding to the length of the path. But we can only know this value once
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we have finished building the path. However, since for each vertex in the disagreement
set we either need one, two or three κ-transformations and each of them corresponds to
a new state of the path, we can assume that we will need between d and 1.5 ·d moves
(where d is the size of the disagreement set). We have chosen to update the count of
each state involved by 1.25 · d. One thing to note is that, instead of having states as
(Ai,Ai+1) where Ai and Ai+1 are tours, we store them as (Ai,v) where v is the vertex
where we have made the move to get from tour Ai to Ai+1, because, given the length
of a tour even for a small grid, we need to store as little as possible. For this reason,
whenever we update the hashmap of counts we do so for both (Ai,v) and (Ai+1,v).
Suppose we are currently at tour Ai an are trying to fix vertex v. If the fixing move is
direct, we would update states (Ai,v) and (Ai+1,v) with the value 1.25 · d (either add
this value to the existent count or add the state to the hashmap with this initial value). If
the move is not direct, depending on how many moves we need, we either first update
states (Ai,u) and (Ai+1,u), where u is the helper and then states (Ai+1,v) and (Ai+2,v)
or, in this order: (Ai,v), (Ai+1,v), (Ai+1,u), (Ai+2,u), (Ai+2,v) and (Ai+3,v). This
hashmap will be used throughout the entire simulation, maintaining the count for all
the pairs of tours generated.

We will next present all of the above steps with the help of 2 sampled tours.

4.4 Illustrative example

In this section we will work through an example to illustrate every step involved in
the algorithm implemented to build a path. We have chosen an example such that all
types of moves with the different possible cases will be present. As before, vertices are
written between brackets. We will be working with tours on the (2,4) grid.

1

5

4 2 3

6 78

7 113

14 2 6 10

8 124

13 1 5 9

15

16

Figure 4.1: (2,4)Grid

Suppose tour A is:

1 (1) 3 (4) 13 (8) 16 (7) 9 (3) 11 (2) 5 (6) 6 (2) 7 (1) 2 (5) 4 (8) 14 (4) 15 (3) 10 (7) 12 (6) 8 (5)
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and tour B is:

1 (1) 3 (4) 14 (8) 13 (4) 15 (3) 11 (2) 7 (1) 2 (5) 4 (8) 16 (7) 10 (3) 9 (7) 12 (6) 6 (2) 5 (6) 8 (5)

with the corresponding transition systems:

Vertex Tour A Tour B
(1) {{1,3},{2,7}} {{1,3},{2,7}}
(2) {{5,11},{6,7}} {{5,6},{7,11}}
(3) {{9,11},{10,15}} {{9,10},{11,15}}
(4) {{3,13},{14,15}} {{3,14},{14,15}}
(5) {{1,8},{2,4}} {{1,8},{2,4}}
(6) {{5,6},{8,12}} {{5,8},{6,12}}
(7) {{9,16},{10,12}} {{9,12},{10,16}}
(8) {{4,14},{13,16}} {{4,16},{13,14}}

Then the disagreement set is {(2),(3),(4),(6),(7),(8)} and say the HashMap of states
is currently empty; the value we will add at each update is 1.25 ·5 = 6.25, because the
size of the disagreement set is 5.

We start by trying to fix vertex (2) - we need to check the availability of the needed
move. The corresponding edges for vertex (2) are:

A : 11(2)5...6(2)7
B : 11(2)7...6(2)5

therefore the direct move is not available (we should have had 11(2)6...5(2)7 or the
inverse in B).

Since the move is not direct, we will start looking for a helper. The only vertices that
interleave (2) in A are (5) and (6). Only (6) is in the disagreement set, so this is the
only possible helper.

Fixing helper (6) - we need to check the availability of the direct move. The corre-
sponding edges for vertex (6) are:

A : 5(6)6...12(6)8
B : 12(6)6...5(6)8

so the direct move is not available. This means we are in the 3 moves case described
in the previous section - we need to make the available move at (2), which will allow
us to do the desired move at (6), which in turn will allow the fixing move at (2). So
first let us we make the available move at (2) in A, which will give A1 with transition
system:

T S(A1,(2)) = {{5,7},{6,11}} and T S(A1,(v)) = T S(A,(v)) for v 6= 2

and edge sequence:

1 (1) 3 (4) 13 (8) 16 (7) 9 (3) 11 (2) 6 (6) 5 (2) 7 (1) 2 (5) 4 (8) 14 (4) 15 (3) 10 (7) 12 (6) 8 (5).

We now add states (A,(2)) and (A1,(2)) to the HashMap of counts, each with value
6.25.

Observe that we can now do the needed move at (6):
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A1 : 6(6)5...12(6)8
B : 12(6)6...5(6)8

This move will give A2 with transition system

T S(A2,(6)) = {{6,12},{5,8}} and T S(A2,(v)) = T S(A1,(v)) for v 6= 6

and edge sequence:

1 (1) 3 (4) 13 (8) 16 (7) 9 (3) 11 (2) 6 (6) 12 (7) 10 (3) 15 (4) 14 (8) 4 (5) 2 (1) 7 (2) 5 (6) 8 (5).

We need to update the counts of states (A1,(6)) and (A2,(6)), by adding them to the
HashMap with value 6.25.

The previous move fixes helper (6) and allows us to fix (2) - the move at (2) is now
available. The transition system of A3 is:

T S(A3,(2)) = {{5,6},{7,11}} and T S(A3,(v)) = T S(A2,(v)) for v 6= 2

and edge sequence:

1 (1) 3 (4) 13 (8) 16 (7) 9 (3) 11 (2) 7 (1) 2 (5) 4 (8) 14 (4) 15 (3) 10 (7) 12 (6) 6 (2) 5 (6) 8 (5)

We will update the counts of states (A2,(2)) and (A3,(2)) by adding them to the
HashMap with value 6.25.

Now that we fixed vertices (2) and (6) we remove them from the disagreement set,
which is now: {(3),(4),(7),(8)}.

The next one to be fixed is vertex (3). The needed move is not available so we again
look for a helper. Looking at the interleaving vertices and the disagreement set we see
that the lowest index vertex that appears in both is (4). We can do the direct move at
(4) which allows us to do the fixing move at (3). Each time we make a move we add
the relevant entries in the HashMap. We delete (3) and (4) from the disagreement set
and move on to the next vertex. (7) and (8) can both be fixed by direct moves.

After this we move on to the next pair, going through the same steps, just that this time
not all of the states will be added to the HashMap, because we may have seen them
already - therefore if a state is already there we will be update it by adding the relevant
value to the existent count (1.25·the size of the new disagreement set).

4.5 Results

We have run the path building algorithm on grids of sizes (2,n) and (3,n) with n
between 5 and 10. We have sampled 106 pairs for the (2,n) grids and 105 pairs for
the (3,n) grids. We will account for this in our calculation of the estimate of ρ by
multiplying with (|Ω| ∗ (|Ω|−1))/P. The expression we had before for ρ was:

ρ̄ = ρ̄(Γ) = max
e

n
|Ω| ∑

γxy3e
|γxy|.
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The estimate will therefore be:

ρestimate(Γ) =
n(|Ω|−1)

P
max

e ∑
γxy3e
|γxy|.

Note that we are also estimating ∑γxy when we approximate the length of the path with
1.25d, where d is the size of the set of the disagreement vertices between two tours.
Adding the actual length of the path would have meant that all updates of the states
had to be done after the path was constructed, which would have made computation
even more difficult.

These are the results for ρestimate:

(2,n) 5 6 7 8 9 10
tours 1.6 ·104 1.1 ·105 7.9 ·105 5.3 ·106 3.5 ·107 2.3 ·108

ρestimate 2.5 ·102 5.5 ·102 1.5 ·103 7.1 ·103 3.7 ·104 2.2 ·105

which we approximated to:

(3,n) 5 6 7 8 9 10
tours 1.7 ·106 2.8 ·107 4.5 ·108 7.2 ·109 1.1 ·1011 1.7 ·1012

ρestimate 6 ·103 1.4 ·105 2.4 ·106 4.6 ·107 6.8 ·108 1.3 ·1010

We believe that more pairs of tours should be sampled in order to get a better idea
whether the chain might have high conductance.



Chapter 5

Conclusions

In this chapter we will review the main achievements and describe what areas can be
improved.

Our project aimed to experimentally study whether the Kotzig Chain may be rapidly
mixing, which would indicate that an efficient approximation algorithm for the number
of Euler Tours on 4-regular graphs could be found. For this there were three main
objectives: sampling Euler Tours on graphs, building the paths between pairs of tours,
analyse the conductance based on the experimental results. A lot of effort has been
put into understanding the required readings and filling in the gaps of existent results.
The sampling and building the paths algorithms have been implemented and also the
tools to get insight on the values for the edge loading. More time could we put into
analysing the results. However, other (unexpected) contributions have been made,
which were fixing the transfer matrix for the (3,n) grid and showing that we can still
use the “transfer matrix” approach to sample Euler Tours.

For further work, besides running the algorithm with more samples, some effort could
be put into finding a way to represent the space states that would make the computation
more efficient. Right now, we are using the sequence of edges representation annotated
with the vertex and storing this in a hashmap. One thing we could do is to create an
array of hashmaps that would group the states according to the vertex where the change
was made. Finding ways to sample more pairs in a shorter time would be the main
improvement to the coding part of the project.
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