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ABSTRACT

Searching for similar GPS trajectories is a fundamental problem

that faces challenges of large data volume and intrinsic complex-

ity of trajectory comparison. In this paper, we present a suite of

sketches for trajectory data that drastically reduce the computation

costs associated with near neighbor search, distance estimation,

clustering and classification, and subtrajectory detection. Apart

from summarizing the dataset, our sketches have two uses. First,

we obtain simple provable locality sensitive hash families for both

the Hausdorff and Fréchet distance measures, useful in near neigh-

bour queries. Second, we build a data structure called MRTS (Multi

Resolution Trajectory Sketch), which contains sketches of varying

degrees of detail. The MRTS is a user-friendly, compact representa-

tion of the dataset that allows to efficiently answer various other

types of queries. Moreover, MRTS can be used in a dynamic setting

with fast insertions of trajectories into the database.

Experiments on real data show effective locality sensitive hash-

ing substantially improves near neighbor search time. Distances

defined on the skteches show good correlation with Fréchet and

Hausdorff distances.

CCS CONCEPTS

• Theory of computation → Data compression; • Networks

→ Location based services; • Information systems → Global po-

sitioning systems;
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1 INTRODUCTION

Location analytics is a fundamental aspect of insights from GPS,

sensor and mobile phone data, with applications in various domains

ranging from social sciences, communication networks to smart

cities and transport. Effective analysis depends on fast response

to basic queries, for example, finding the nearest neighbor (or all

near neighbors) of a given trajectory. Ability to efficiently update

the query database – e.g., inserting a new trajectory or adding new

points to an existing trajectory – helps one to handle streams of

trajectory data continuously updated in real time.

Trajectories are usually compared using Hausdorff distance,

Fréchet distance, or the dynamic time warping (DTW) distance [26].

The last two are most popular as they incorporate the intrinsic se-

quential nature of the trajectories in the comparison. However,

these distances are computationally challenging to apply to large

datasets. Dynamic programming algorithms to compute Fréchet

and DTW between two trajectories of lengthm requireO(m2) time

per comparison, which makes them prohibitive in large datasets.

Nearest neighbor searching on points in the exact version require
either linear query time or space exponential in the dimension d ,
popularly referred to as the curse of dimensionality. Recently it was

proven [3] that a query time sublinear inn for the batchedHamming

nearest neighbor problem would refute the Strong Exponential

Time Hypothesis (SETH). With such barriers, researchers turned

to approximate nearest neighbor search. Formally, a c-approximate

nearest neighbor algorithm will return an item whose distance to

the query is at most c times the true nearest neighbor of the query

item. Indyk and Motwani [19] were the first to develop Locality

sensitive hashing (LSH) for this approximation problem, and it

was subsequently improved upon in various works to obtain a

query time sublinear in n, and polynomial dependence in d in all

parameters (see for example: [6, 11, 16, 17, 25]). The main idea in

LSH is to construct a hash function that ensures that similar items

are usually hashed to the same buckets, while dissimilar items are

hashed to different buckets.

However, unlike point datasets, where one can exploit the bounded

doubling dimension of the underlying metric space [7, 8], compress-

ing trajectory data while preserving these distances is difficult in

general: the space of trajectories under Fréchet distance does not

have a bounded doubling dimension and does not easily admit a

low dimensional embedding [13].

LSH for trajectories. Indyk [18] describes a version of locality

sensitive hashing for product spaces that apply to Fréchet distances.

However, this approach has an immense space requirement, which

https://doi.org/10.1145/3274895.3274943
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makes it impractical in GPS datasets. A recent work by Driemel

and Silvestri [14] gives simpler mechanisms for locality sensitive

hashing of trajectories. This method works by snapping the vertices

of trajectories to grids, so that trajectories with Fréchet distance

much smaller than the grid size are likely to snap to the same

vertices. The vertex order on the grid then serves as a locality

sensitive hash.

Apart from near neighbor queries, other important research prob-

lems in trajectory datasets include quickly estimating the distance

between two trajectories in the dataset, clustering trajectories, or

detecting whether one trajectory is similar to a sub-trajectory of

another, etc. The above works do not focus on such problems. Fur-

thermore, it is highly desirable to obtain a data structure that can

support fast insertions of new trajectories into the dataset, and also

one where the user can specify a desired degree of detail.

Our contributions.We devise a hierarchy of sketches for trajec-

tories, that not only perform the basic tasks of locality sensitive

hashing and near neighbor search, but can also be used to directly

estimate distances between trajectories, cluster trajectories, detect

subtrajectories, etc. Our sketches and hash families have the added

advantage of being simpler than existing techniques.

The structure of the sketch is as follows: we deploy a random set

of disks in the plane, and for each trajectory, test its intersection

with these disks. Our basic sketch is simply a bit vector representing

the intersection of the trajectory with these disks. This bit vector

can act as a simple locality sensitive hash with provable probabil-

ity guarantee. The main insight is that when disks are deployed

randomly, similar trajectories are likely to intersect a similar set of

disks. A simple measure of distance using this sketch is the Ham-

ming distance giving the number of bits where two sketches differ.

The ordered version of this sketch is a sequence representing the

order in which the trajectory enters and exits the disks. These ideas

are shown in Figure 1. Measures such as edit distance can be used

here to find how similar two sketches are. In the hierarchic version,
we deploy disks of a different size at each level of the hierarchy,

with the “highest” level consisting of the largest disks.

Figure 1: Trajectory skteches with respect to randomly de-

ployed disks. Similar trajectories like a and b are likely to

pass through same set/seqence of disks. For trajectory a, the
basic unordered sketch is 111100, the ordered sketch record-

ing entry and exists is 1, 2, 3, 2, 4, 3, 4 . . . .

In real data analysis, our scales of interest, and therefore the size

of the hierarchy are bounded by the application and the platform.

For example, GPS localization measurements have errors up to a

fewmeters, and thus closeness of GPS data is not significant at scales
smaller than this size L. Similarly, beyond a certain distance, such

as hundreds of kilometers, data points can simply be treated as

far, since applications such as near neighbor search are not useful

beyond such distances – let’s call it this upper boundU .

We make use of these bounds to get theoretically rigorous results

of practical importance. With trajectories d distance apart localized

in a region of area A we can show the following:

• there is a constant factor approximation of the distance be-

tween them in time O(min(m, log(U /d) log(A/d2)))
• a new trajectory can be inserted into the sketch database in

O(m log(A/L2)) time

• an O(m) approximation to the nearest neighbor query can

be computed in O(m log
2 n) time.

Experimental results. Experimental results on two real datasets

show that the distance metric based on the basic unordered sketch

is strongly correlated with Hausdorff distance, and the distance

based on the ordered sketch is correlated with Fréchet and DTW

distances. The correlations hold even when a large proportion of the

data is missing, for example due to sensing/communication failure

or lack of resources. The sketch-based distances can be computed

orders of magnitude faster than Hausdorff, Fréchet , or DTW.

We found that a flat structure – about 50 disks of 2 km radius

gives good practical results. Observe that with bit vector size of

50, Hamming distance or matching of hash can be made extremely

fast. We used this feature for data pruning in nearest neighbor

search. Using the sketch, we identified trajectories of same or similar

sketch for comparison, and discarded everything else. Then applied

Hausdorff and Fréchet distance computation on the small selected

set. The sketch achieved a pruning ratio of about 80% (fraction of

discarded items), while achieving accuracy of 80% – where the true

nearest neighbor was found in the selected set. As a result of the

high pruning ratio, on large datasets, this process runs an order of

magnitude faster.

In other experiments we studied the effect of size and number of

disks used. We also computed the error in distance to the nearest

neighbor in the multi-resolution version of the sketch and found

this to be usually low.

The rest of the paper is organized as follows. In Section 2 we

present related works. In Section 3 we describe the type of queries

that we are considering. In Sections 4 and 5we describe our sketches

and prove that they provide an LSH family (thus solving the near

neighbor problems). In Section 6 we describe the MRTS (Multi

Resolution Trajectory Sketch) data structure and show how to

handle insertions, distance estimation, classification and clustering

queries. Section 7 contains our detailed experimental results.

2 RELATEDWORKS

Distances between curves are challenging to compute. For inputs

of lengthm, Fréchet distance F (·) and DTW distance DTW (·) can

be computed in O(m2) [5, 26]. Recent results show that assuming

strong exponential time hypothesis, strongly subquadratic time

algorithms are impossible [10] for Fréchet . Thus, in datasets of n
trajectories. simple near neighbor search will run in O(nm2) time.

Indyk’s approach to LSH using product metrics [18] achieves an

approximation of O(logm + log logn) and nearest neighbor query

time of O(mO (1)
logn) using O(|X |

√
m (m

√
mn)2) storage, where X

is the domain in question – loosely, the area A of the region con-

taining the trajectories. This large data structure to be constructed
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and stored, and the resultant query time polynomial inm are the

main challenges of using this method in GPS datasets with largem.

The recent work by Dreimel and Silvestri [14] uses more intuitive

methods to achieve locality sensitive hashing for Fréchet and DTW.

The first strategy proposed is to snap trajectories to a grid placed

with a random translation. The hash of a trajectory in this system is

given by the sequence of vertices its snapped version traverses. For

two trajectories P and Q , the probability of having identical hash

depends on how the grid cell size δ compares to lengthm and the

Fréchet distance dF (P ,Q). In the plane, the probability of identical

hash can be shown to be

(
1 −

4mdF (P ,Q)

δ

)
. In this scheme, it is

possible to construct an LSH with approximation factor linear inm
for parameters suitably chosen for a pair of trajectories. A different

scheme in [14] proposes to apply a fixed sequence of random per-

turbations to the vertices of a trajectory P before snapping them

to nearest grid points. The query undergoes a different perturba-

tion per vertex before snapping. This scheme achieves a constant

approximation factor, but the probability of hashes matching for

two similar trajectories can be shown only to be more than ≈ 2
−4m

,

which is impractically small for datasets with long GPS trajectories.

Since this scheme is meant mainly for answering near neighbor

queries, it does not provide answers to various other types of queries

one may be interested in, e.g., quickly estimating the distance be-

tween two trajectories, clustering, subtrajectory detection, etc.

Other works in managing large trajectory datasets include meth-

ods of simplification, where the goal is to construct an approxi-

mate curve that is close to the original. The Douglas-Peucker al-

gorithm [12] is possibly the most popular algorithm of this type,

which works well in many practical cases. A recent work uses

topological persistence to simplify trajectories online, and find the

significant turns at different resolutions [21]. Compact sketches

based on topology of the domain have been developed in [15]. These

methods treat trajectories individually, and do not provide any guar-

antees on distance computation or search in datasets. The power of

large cluster computers has been exploited in [27] by developing

indexing for segmented trajectories. In-network mining for popular

subtrajectories is considered in [20].

In contrast to these works, our focus was to speedup trajectory

processing by building highly compressed summaries. This enabled

us to rapidly estimate distances between trajectories and prune

large fractions of data when searching for similar trajectories.

3 PROBLEM DESCRIPTION AND

BACKGROUND

We let A denote the area of the region (typically a square or a

rectangle) of interest that contains all the trajectory data. Let n
denote the number of trajectories in the dataset. When comparing

two trajectories, we will use the term “distance between them”

to mean either the Hausdorff or the Fréchet distance (defined in

Section 3.1). We define a trajectory T of lengthm as a sequence of

ordered embedded vertices T = {v0,v1, . . .vm }. We do not include

other information than the order of the vertices, so essentially we

treat trajectories as curves. The discrete representation simplifies

the application of algorithms directly to the data without need for

interpolation.

We assume an upper boundU and a lower bound L on the dis-

tances of interest. This means that we only care about the actual

distance between a pair of trajectories if their distance is between

L andU . For other pairs of trajectories, i.e., trajectories that are far-

ther thanU apart or within L of each other , we just want to detect

if this happens. We partition the interval [L,U ] into subintervals,

depending on the degree of detail desired by the user.

Let a be a user-specified constant larger than 1 (otherwise we

set a = 2) and let l = loga (U /L). Define ri = U /ai for i ∈ {0, . . . , l}.
Thus r0 = U , and the ri ’s decrease geometrically until rl = L. These
ri will serve as partitions of [L,U ] – the smaller the ri , the greater
the accuracy.

Let T be the query trajectory. We provide a data structure that

performs the following operations efficiently:

(1) (c, r )-near Neighbor queries: if there exists a trajectory

in the dataset within distance r , return a trajectory in the

dataset that is within cr of T . Our methods allow a linear

approximation c = O(m) answer with high probability in

O(m logn) time.

(2) c-approximate nearest neighbor queries: return a trajec-

tory whose distance to T is within c times the distance of T
to its nearest trajectory in the dataset. We can answer the

c-approximate nearest neighbor queries in O(m log
2 n) time.

(3) Clustering/classification: we can partition the dataset of

n trajectories into P1, · · · , Pl , where trajectories in the set Pi
are within ri and at least ri+1 away from the query trajectory

T . The entire partitioning takesO(l min(m, log(A/L2))) time.

To compute only Pi for a given i , our data structure takes
O(min(m, log(A/L2))) time.

(4) Distance estimation: Given another trajectory T ′
, we can

compute a constant factor approximation of the distance

d between T and T ′
in O(min(m, log(U /L) log(A/d2)) time,

where A is the area of the region where the trajectories are

deployed.

(5) Subtrajectory detection: Given another trajectory T ′
, we

can identify if it is similar to a subtrajectory of trajectory T
in timeO((min(m, log(A/L2)))2). Notice that a subcurve of a
curve may have a large Fréchet or Hausdorff distance to the

original curve, and so such queries are not merely distance

queries.

(6) Finally, the data structure handles fast insertions of trajec-

tories to the dataset. Inserting a new trajectory of lengthm
into our data structure takes O(m log(A/L2) log(U /L)) time

(Lemma 5.1).

We now describe the proposed distance measures on the space

of trajectories and the concept of LSH.

3.1 Preliminaries: distance measures and

locality sensitive hashing

Distance Measures. As one baseline to compare trajectories, we

use the Hausdorff distance, which can be defined as the maximum

of distances from vertices on one trajectory to the nearest vertex

on the other trajectory. For the following definitions we consider

two trajectories T1 = {u1,u2, . . .um1
} and T2 = {v1,v2, . . .vm2

},

of length (number of vertices)m1 andm2, respectively.
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Symbol Description

T trajectory (sequence of GPS locations)

m length of trajectory

n number of trajectories

A area of the map

H (T1,T2) Hausdorff distance between trajectories T1 and T2
F (T1,T2) Frechet distance between trajectories T1 and T2
D number of disks

r radius of a disk

SD,r (T ), S(T ) binary sketch

OSD,r (T ),OS(T ) ordered sketch

dD,r distance between sketches (binary or ordered)

U, L upper and lower bounds on the degree of detail

ℓ number of layers

Li layer i

Di number of disks on layer i

ri radius of disks on layer i

Adif area of the symmetric difference

ESTkF estimator of kF

Table 1: Table of notations

Definition 3.1 (Hausdorff distance). The Hausdorff distance be-

tween T1 and T2 is:

H (T1,T2) = max{max

u ∈T1
min

v ∈T2
d(u,v),max

v ∈T2
min

u ∈T1
d(u,v)}.

The complexity of computing Hausdorff distance between the

two trajectories is O((m1 +m2) log (m1 +m2)) [4], using Voronoi

diagrams.

The Fréchet distance is another common distance measure, and

it is generally believed to be more appropriate for comparing curves

in a plane [4]. To define it we use the concept of traversal (as in [14]):

Definition 3.2 (Traversal). Given two trajectories T1,T2, of sizes
m1,m2 respectively, a traversal τ = {(i1, j1), (i2, j2), · · · , (il , jl )} is
a sequence of pairs of indices referring to a pairing of vertices from

the two curves with the properties:

(1) i1 = 1, j1 = 1, il =m1 and jl =m2

(2) ∀(ik , jk ) ∈ τ : (ik+1 − ik ) ∈ {0, 1} ∧ (jk+1 − jk ) ∈ {0, 1}

(3) ∀(ik , jk ) ∈ τ : (ik+1 − ik ) + (jk+1 − jk ) ≥ 1.

Definition 3.3 (Discrete Fréchet distance). Let T be the set of all

traversals between two trajectories T1 and T2. The discrete Fréchet
distance F (T1,T2) between them is:

F (T1,T2) = min

τ ∈T
max

(ik , jk )∈τ
∥uik −vjk ∥.

Locality-sensitive hashing. Solutions for approximate nearest

neighbours often employ Locality-sensitive hashing (LSH) algo-

rithms which ensure that the probability of two objects to be at-

tributed to the same hash is high for similar objects and low for

substantially different objects. A family of hash functions is a col-

lection of mappings that are defined on the same sets (the set of all

objects, which is of arbitrary size, and a set of fixed size).

Definition 3.4 (Locality-sensitive families). Let d be a distance

measure defined on two trajectories T1 and T2. Given the values

r > 0, c < 1, 0 ≤ p1,p2 ≤ 1 with p1 > p2, a family H of hash

functions is (r , cr ,p1,p2)-sensitive if for every f ∈ H :

(1) if d(T1,T2) ≤ r , then Pr (f (T1) = f (T2)) ≥ p1;
(2) if d(T1,T2) ≥ cr , then Pr (f (T1) = f (T2)) ≤ p2.

A (r , cr ,p1,p2)-sensitive family of hash functions is useful when

the collision probabilities p1,p2 satisfy p1 > p2. The LSH families

we derive in this paper have p2 = 0.

3.2 LSH families and the near-neighbor

problem

Given a (r , cr ,p1,p2)-sensitive hashing family, there is a standard

framework for solving (c, r )-near neighbor queries. Using this frame-

work, one can also solve the c-approximate nearest neighbor queries.

We briefly describe it here, and refer the reader to more comprehen-

sive descriptions [14, 19] for details. First, we construct a new family

H
′

of hash functions by concatenating ℓ = max{1, logp2 1/n} hash

functions. This decreases the collision probability to at most 1/n.

We then choose k = (1/pℓ
1
) hash functions from the family H

′

,

and insert each trajectory into k hash tables. This completes the

preprocessing phase. Once the query arrives, we search among all

trajectories that collide with the query in the k hash tables, and

compute the distance of the query trajectory to such trajectories.

We can stop as soon as a trajectory within cr distance is found,

or in the reporting version, report all trajectories within cr . The
space and query time of such a data structure is governed by the pa-

rameter ρ = logp1/logp2. The space used isO(n1+ρ + nm) and the

query time is O((m logm)nρ ) for Hausdorff distance and O(m2nρ )
for Fréchet distance.

For the LSH families we derive in this paper, p2 = 0, i.e., far away

trajectories never hash to the same bucket. In this case, the query

time isO(m). These query times are for the algorithm to work with

a constant probability. To get (c, r )-near neighbors with probability

at least 1−1/n, we can repeat the above process logn times, leading

to an extra logarithmic overhead in the space and query time. Given

a data structure to solve the (c, r )-near neighbor problem, one can

use the concept of ring trees as described by Indyk and Motwani

[19] to solve the c-approximate nearest neighbor problem.

4 COMPACT SKETCHES AND LSH FOR NEAR

NEIGHBORS

We propose a simple strategy that allows us to build LSH schemes

for Hausdorff, Fréchet and DTW distances. The sketches are based

on randomly deploying disks on a map and considering their inter-

sections with trajectories. We then define metrics on these sketches

that are related to the distances between the corresponding trajec-

tories.

4.1 Binary sketches for Hausdorff distance

Our approach is based on the observation that if two trajectories

T1,T2 are such that the Hausdorff distance H (T1,T2) is small, then

they both go through approximately the same neighbourhoods on

the map.

Fix a radius r > 0, and let D = Θ(A/r2). We define our sketch
S(T ) of a trajectoryT as the record of its intersection withD random

disks on a map:

Definition 4.1 ((D, r )-Binary Sketch). The Binary Sketch of a tra-

jectory T is the binary vector SD,r (T ) = e1 . . . eD of length D,
defined in terms of a set of D random but fixed disks of radius
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r . The vector element ei = 1 if the disk i intersects trajectory T ,
otherwise it is 0.

We define the measure of distance between the sketches as the

number of bits that are different:

Definition 4.2 ((D, r )- Binary Sketch Distance). The Binary Sketch
Distance between two trajectories T1,T2 is the Hamming distance

between their (D, r )-Binary Sketches. That is, the number of indices

with different entries: dD,r (T1,T2) =
��{i : e1i , e2i }

��
.

In other words, this is the L1 norm of the binary difference of

the two vectors and it represents the number of disks that intersect

exactly one of the trajectories.

4.1.1 Data structures to speed up sketch computation. LetT be a

trajectory of lengthm. InO(mD) timewe can test each disk for every

point in the trajectory, and retrieve the set of disks intersected by

the trajectory, i.e., the position of 1s in the sketch vector. However,

when D is large (recall that D = Θ(A/r2)), we can actually do better.

Notice that for a given point p on the trajectory, we want to

quickly determine which of the D disks of radius r contain p. This
is essentially a range searching problem: Let Q denote the centers

of the D disks, and B denote a ball of radius r around p. A circular
range query for B determines which points in Q lie inside B. The
disks corresponding to those points are exactly those that contain

p (the center of B). Using known range searching data structures

from computational geometry [2, 22], this can be accomplished in

O(logD + k) time, where k is the number of disks containing p. In
summary:

Observation 4.3. Given a set of D disks of radius r and a trajec-
toryT of lengthm, the set of k disks that intersectT can be computed
in O(m logD + k) time.

Computing the binary sketch distance. For large r such that D =
O(m), one can compute the Hamming distance between sketches

of length D in the straightforward manner. For small r , D is larger

than the number of disks intersected by the trajectory (which will

never be more thanm, but could be significantly smaller), resulting

in sparse bit vectors. When D is large enough that the vectors are

very sparse, we do not store the entire sketch but just the indices of

the disks intersected by the trajectory. Assume that no trajectory

intersects more than I disks, where I << D, and I = O(m). Then we

can actually compute the binary sketch distance in O(I log I ) time

using a set intersection query, where the two sets are the sets of

disks intersected by each trajectory. Thus, computing the distance

takes at mostO(min(D,m logm)) time, and is typically significantly

smaller; e.g. for uniformly sampled trajectories, this can be done in

O((m/r ) log(m/r )) time.

4.1.2 Binary sketches provide an LSH family.

Theorem 4.4. Let T1,T2 be two trajectories of lengthsm1 andm2

respectively, intersecting at least one disk. Letm = min(m1,m2) and
c > 1 a constant. Then the following are true:

(1) If H (T1,T2) <
2r
c then P(S(T1) = S(T2)) > 1 − 8π r 2Dm

cA
(2) If H (T1,T2) > 2r then P(S(T1) = S(T2)) = 0.

In order to prove the theorem, we need a geometric lemma.

Lemma 4.5. The probability that a randomly placed disk separates
two vertices at distance h is bounded by 4πrh/A.

Proof. The disk separates the vertices when the center lies in

the symmetric difference of the disks of radius r centered at the

two vertices. Let us call this the symmetric difference area. This is
shown pictorially in Figure 2.

Figure 2: Symmetric difference area: A disk of radius r sep-

arates the two vertices if and only if its center lies in the

symmetric difference of disks at those vertices given by the

shaded area.

This area is bounded by 4πrh. Thus the probability that a partic-

ular disk x separates the vertices, is at most 4πrh/A.
□

Proof of Theorem 4.4. (1) For every u ∈ T1 there is a v ∈ T2 such
that d(u,v) ≤ H (T1,T2) = H , and vice versa. Let us refer to this set

of pairs as the closest pairs. Any disk of radius r that contains u but

not any vertex fromT2, must also not containv , and therefore must

have its center in the symmetric difference area for u and v . This
applies for all closest pairs. Thus, any disk i such that d1i , d

2

i must

lie in the symmetric difference of at least one closest pair. There

arem closest pairs and any closest pair is separated by a distance

at most H . By union bound, the probability that the center of a

disk is in a symmetric difference area is bounded by (4πmrH )/A.
Substituting H < 2r/c gives the desired bound. To prove (2), we

note that if the trajectories are more than 2r away then no disk

can contain a point from each trajectory, and hence the sketches

cannot be the same.

Observe that setting D = Θ(A/r2) and c = O(m) gives us a con-

stant probability of collision, and thus by the standard framework

of (c, r )-near neighbor data structure, we obtain the desired space

and query bounds.

4.2 Ordered sketches for Fréchet distance

As opposed to Hausdorff, the Fréchet distance between trajectories

takes into account the ordering of the vertices. Therefore, we pro-

pose sketches that maintain the order of the intersections with the

disks.

Definition 4.6 (Ordered Sketch). Let T be a trajectory and D the

set of disks spread on the map. We define by the Ordered Sketch the

sequence of indices of the disks that T enters and exits.

Figure 1 shows a trajectory a passing through disks 1, 2, 3, 4. The

trajectory first enters disk 1, exits 1, enters disk 2, enters disk 3 and

so on.

We define a measure of distance (dissimilarity) and also a mea-

sure of similarity between two ordered sketches, and therefore,

between their corresponding trajectories. These will help us answer

distance related queries when we describe our Multi Resolution

Trajectory Sketch (MRTS) data structure.
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Definition 4.7 ((D, r )-Ordered Sketch Distance). TheOrdered Sketch
Distance between two trajectoriesT1,T2 is the edit distance between
their (D, r )Ordered Sketches. That is, the number of insertions, dele-

tions and substitutions required to transform one ordered sketch

into another.

Definition 4.8 ((D, r )-LCS measure). The LCSM (Longest Com-

mon Subsequence Measure) between two trajectories T1,T2 is the
length of the LCS between their (D, r ) Ordered sketches.

4.2.1 Ordered sketches provide an LSH family. We first find the

probability of collision of two trajectories in terms of their Fréchet

distance.

Lemma 4.9. Given two curves T1,T2 with m1,m2 vertices, m =
min(m1,m2) and D disks of radius r the probability that they hash
to the same sequence is bounded by:

P(OS(T1) = OS(T2)) ≥ 1 −
4πrDm

A
F (T1,T2).

Proof. Suppose the trajectories do not hash to the same se-

quence. From Lemma 3 in [14] we know that an optimal traversal

T will separate the trajectories in at mostm components, each of

them a star. Intuitively a star component has one vertex on one

trajectory (traversal is static on this curve), and some vertices on

the other trajectory (where the traversal is happening). We consider

Ek to be the event that a disk separates a pair of vertices in the

component k .
Since the component is a star, there must exist vertexv such that

v is connected to all other vertices in the component. All the lengths

are less than F (T1,T2). The probability that any pair is separated is

less than 4πrF (T1,T2)/A (this is just the symmetric difference area -

similar to what we had before). There are at mostm components in

the traversal and D disks, therefore, by union bound, the probability

that the hashes differ is bounded by
4π rDm

A F (T1,T2). □

This provides us with the following locality sensitive hash family.

Theorem 4.10. Let T1,T2 be two trajectories of lengths m1,m2,
intersecting at least one disk. Let A be the area of the region, r the
radius of the disk, D the number of disks,m = min(m1,m2) and c a
constant. Then the following are true:

(1) If F (T1,T2) < 2r
c then P(OS(T1) = OS(T2)) > 1 − 8π r 2Dm

cA
(2) If F (T1,T2) > 2r then P(OS(T1) = OS(T2)) = 0.

Proof. The second part is apparent as there is no disk which

intersects both trajectories. For the first part we use Lemma 4.9.

□

4.3 Summary of LSH and near neighbor results

We have shown how the binary sketches and the ordered sketches

provide a locality sensitive hash family for the Hausdorff and the

Fréchet distances, respectively. In both families, setting the number

of disks D = Θ(A/r2) and c = O(m) gives us a constant collision

probability of nearby trajectories, and we have zero collision prob-

ability for far-away trajectories. From the framework described in

Section 3.2, we obtain that

Theorem 4.11. There exists a data structure using binary and
ordered sketches, that takes space O(n) memory words, and returns
an O(m) approximation (in the Hausdorff metric using the binary
sketch, and in the Fréchet metric using the ordered sketch) to the

(1) (c, r )-near neighbor problem in O(m logn) time.
(2) c-approximate nearest neighbor problem in O(m log

2 n) time.

Now we turn to the other kinds of queries, and the data structure

we use to solve them.

5 MRTS: MULTI RESOLUTION TRAJECTORY

SKETCH

In this section we describe the MRTS (Multi Resolution Trajectory

Sketch), a layered data structure that we will use to solve distance

estimation, classification, clustering and subtrajectory detection

queries.

5.1 Description

Recall that U and L are upper and lower bounds on the degree

of detail desired by the user, and ri = U /ai for 0 ≤ i ≤ h, with
l = loga (U /L) and rl = L. Define Di = Θ(A/r2i ) for 0 ≤ i ≤ l .

Our layered data structure has l layers, denoted by Li , 0 ≤ i ≤ l .
Layer Li stores

(1) The binary sketches of all the n trajectories, for Di random

disks of radius ri each. When Di = ω(m), we store the set of

disks intersecting a trajectory as opposed to the bit vector

of length Di .

(2) The ordered sketches of all the n trajectories, for Di random

disks of radius ri each.
(3) In addition, there are forward and backward pointers be-

tween a trajectory in the dataset and its corresponding sketches

at each layer. Each sketch also stores a counter with the num-

ber of trajectories pointing to it.

Insertions. When a new trajectory T is to be inserted in the

dataset, we use the data structure referred to in Observation 4.3.

Computing the sketch on layer i requires O(m logDi + ki ) time,

where ki is the number of disks of radius ri that intersect T . Since
Di ≤ Dl , overall, this costs us at most O(m logDl l + k), where k is

the total number of disks intersecting T . Plugging in the values of

Dl and l , we get

Lemma 5.1. A new trajectory T can be inserted into MRTS in
O(m log(A/L2) log(U /L) + k) time, where k is the total number of
disks intersecting the trajectory.

Space. Any point p on a trajectory T lies in O(1) out of the Di
disks for every i . This is because Di is the number of disks required

to cover the region A and the disks are deployed uniformly at

random in the domain. Thus the sketch of T on layer i requires at
most O(m) space, and so in total the sketches for the trajectory T
in the entire MRTS data structure usesO(ml) space. Since there are
n trajectories,

Observation 5.2. TheMRTS uses atmostO(nm log(U /L))words
of memory in space.

Notice that O(nm) words of space are required to store the

dataset. Moreover, the bound above is pessimistic in the sense that
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we do not consider the fact that for densely sampled trajectories,

many points of the trajectory will lie in the same disk. In fact, one

can show that for uniformly sampled trajectories,O(r ) points lie in
a disk of radius r . This reduces the space usage of our data structure
to O(nmL log(U /L)) memory words.

5.2 MRTS and distance queries

Now we show how to handle other types of queries mentioned in

our problem description. For the sake of brevity, we will restrict

ourselves to the Fréchet case, which is arguably harder than the

Hausdorff case, and more interesting. We point out that all of our

results generalize to the Hausdorff case with the same (or better)

bounds. However, before we describe our query procedure, we need

some geometric lemmas.

Lemma 5.3. Consider two disks of radius r , and leth be the distance
between their centers. Let Adif denote the area of their symmetric
difference (see Figure 2). Then 1) if h > 2r , Adif = 2πr2, and 2) if
h ≤ 2r , Adif ≥ 2rh.

Proof. Part 1) is obvious, as the disks are disjoint. For part 2),

the area of the symmetric “lens”, or the intersection of the two

disks, is given by 2r2 cos−1(h/2r ) − (h/2)
√
4r2 − h2. The area of the

symmetric difference is therefore

Adif = 2(πr2 − 2r2 cos−1(h/2r ) + (h/2)
√
4r2 − h2)

= 2r2(π − 2(π/2 − (h/2r ) −O((h/2r )3))) + (h/2r )
√
1 − (h/2r )2

≥ 2r2(h/r +O((h/2r )3)

≥ 2rh.

□
This gives us the following crucial observation:

Observation 5.4. Let T1 and T2 be two trajectories such that
their Fréchet distance is F . Then the probability that a randomly
chosen disk of radius r intersects one trajectory but not the other is at
least 2rF/A.

This is because if we look at the component realizing the Fréchet

distance (the maximum length of the leash), there must be a pair

of vertices u ∈ T1 and v ∈ T2 that are F apart. A disk separates

these two vertices with probability equal to the measure of their

symmetric difference area, which by the above lemma is at least

2rF/A.
Lastly, we show that the ordered sketches already provide an

upper bound on the Fréchet distance.

Lemma 5.5. LetT1 andT2 be two trajectories with Fréchet distance
F . Consider their ordered sketches withD disks of radius r , and assume
all vertices overlap at least one disk. If the ordered Sketches coincide,
then F < 2r .

Proof. If the ordered sketches coincide then for every vertex in

T1 there is at least one vertex in T2 such that the distance between

them is lower than 2r , because they should both belong to the same

set of disks. There is a traversal that groups every pair of such

vertices, giving a cost of at most 2r . This means than an optimal

traversal has a lower cost, therefore the Fréchet distance is less than

2r . □

5.2.1 Querying the MRTS. We now describe how we query the

MRTS for different kinds of queries.

Distance Estimation. Given the indices of two trajectoriesT1 and
T2 in the dataset, we want to approximate the Fréchet distance

between them. Note that precomputing the distance of a newly

inserted trajectory to all the existing trajectories in the dataset

trivially solves this problem in O(1) time, but the cost is the high

insertion time, at least O(m2n). The MRTS has low insertion time,

and is still flexible enough to answer such queries faster.

Let us consider the optimal traversal of the two trajectories that

realizes their Fréchet distance F . As observed, this traversal can be

broken down into at mostm components, each of which is a star. In

some of these components the distance isO(F ), whereas in others it

is significantly lower. Let k be the number of components in which

the maximum distance between the vertices of the component (the

center of the star and the other vertices on the second trajectory)

is Θ(F ). We will first estimate the product kF .
The main reason in estimating kF is that the symmetric differ-

ence area of the two trajectories depends linearly on k . If k = 1,

then the two trajectories travel very close together until they reach

this component; in this case the area of the symmetric difference is

O(rF ). On the other extreme, two trajectories could be traveling at

a constant distance F from each other (thus giving the same Fréchet

distance between the trajectories), but the area of the symmetric

difference is O(rFk).
Let ℓi denote the fraction of disks on layer i that intersect one

trajectory but not the other. Clearly, ℓi is an unbiased estimator for

the symmetric difference area (for disks of radius ri ). We compute

Adif =
∑h
i=1 ℓiA/ri , and let EstkF = Adif /h. We can show that this

is an unbiased estimator of the true value of kF , and by increasing

the number of disks at each layer, we can get higher concentration

for this estimator. The expected value of ℓi on the other hand

equals O(rikF/A), as the probability that one disk separates the

two trajectories equals rikF/A.
Query Algorithm: Report r j , where j is the smallest value of i

such that ℓi ≥ riESTkF /A.
We conjecture that this value of r j reported is a constant factor

approximation of the Fréchet distance between the trajectories.

Note that if one just wants an upper bound, the ri corresponding to
the last layer i such that Si

1
= Si

2
(the sketches coincide) gives us an

upper bound,as by Lemma 5.5, we know that the Fréchet distance

between the two trajectories is at most 2ri , since the sketches

coincide.

This procedure requires us to examine the sketches at all levels

in the worst case, requiringO(min(m, log(U /L) log(A/d2)) time. To

get an upper bound we can stop at the first layer where we discover

the sketches are different.

Classification/clustering. Our classification procedure is simple:

for a given interval [ri+1, ri ], we define the set Pi to be all the

trajectories that have the same sketch on layer i of the MRTS as

the query trajectory.

Using the pointers, we can report the trajectories in Pi , or, if one
just needs the count, we can read the counter value of the bucket

corresponding to the sketch of the query trajectory. Running this
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procedure for all 1 ≤ i ≤ l gives us the partition of the dataset. Pro-

cedures such as [23] can be used to select representative elements

as centers for exemplar based clustering. Clustering of trajectories

can be applied to anonymize locations traces [28].

Subtrajectory Detection. Given the query “Is trajectoryT1 ri -close
to a subtrajectory of T2?”, we first insert T1 and T2 in the MRTS if

they haven’t been inserted yet. Then we locate the sketches of T1
and T2 on layer i − 1. We compute the LCS between these sketches,

and answer yes if the sketch for T1 appears as a subsequence, and
no otherwise. To get accurate results with high probability, we can

increase the number of disks on layer i − 1, and take the majority

answer.

6 EXPERIMENTS

We tested the performance of binary and ordered sketches on two

real datasets. The experiments show that:

• there is a correlation between the proposed distace mea-

sures and Hausdorff (strong correlation), Fréchet and DTW

(Section 6.1);

• the correlation holds even with a small number of disks or

with incomplete data (Sections 6.1, 6.3);

• the sketches achieve high pruning ratio with good accuracy,

less storage space and better running time in nearest neigh-

bours queries (Sections 6.2, 6.4, 6.5).

We ran all experiments on both the CRAWDAD dataset of taxis

in Rome [9] and the ECML/PKDD dataset of Taxi Trajectories in

Porto [1].

Data preparation. The ECML/PKDD (Porto) dataset describes

the mobility of 442 taxis driving in the city of Porto (Portugal) for 1

year and is composed of 1.7 million datapoints. The GPS locations

(latitude, longitude) are recorded every 15 seconds with mobile

data terminals installed in the vehicles. Each trajectory represents a

complete taxi trip taken by a passenger. The lengths vary from 1km
to 15km. We randomly selected 1000 trajectories in a 5km × 10km
area of the map.

The CRAWDAD (Rome) dataset [9] contains the GPS locations

of 320 taxi drivers working in the city centre of Rome (Italy). Each

trace is for one driver for one day at about 7 second intervals,

giving roughly 22 million datapoints. To obtain trajectories similar

to individual trips, as in the Porto dataset, we split each trajectory

into trips, such that the length of each is at most a 3 times the

distance between source and destination. This gives trajectories

with lengths roughly between 2km and 5km. We randomly selected

1000 trajectories in a 7km × 2km area of the map.

Choice of parameters. For all experiments with a fixed number

of disks we picked uniformly at random 50 disks of radius 2km. In

general, the choice of radius depends on the scale of the problem.

Suppose we consider two 1km trajectories to be close if their dis-

tance is less than 10m. We choose enough disks to cover the map.

Based on results in Section 4, we want to maximise 1 − 8π r 2
c while

2r
c = 10m. For r = 2km, the probability 1 − 8π r 2

c becomes 0.75,

which is a lower bound for the probability that the sketches are the

same when the trajectories are less than 10m apart.

Experimental setup. The experimentswere implemented in Python

3.4.9 and ran on an Intel Core i5-4570 CPU@ 3.20GHz × 4 processor.

Time comparisons were done by running 20 parallel jobs.

6.1 Correlation with Hausdorff, Fréchet and

DTW

We checked how the proposed distance measures compare to Haus-

dorff, Fréchet and DTW. Figures 3 (a), (b), (c), (e), (f) show the

results for the Porto and Rome dataseta. For each pair of trajecto-

ries we compute the distance: with the binary unordered sketches

for Hausdorff and with the ordered version for Fréchet and DTW.

We grouped the possible values in 30 bins and show in the plots the

median value (white line) and the 5-95, 10-90, and 25-75 percentiles

(the shaded areas). We see that the sketch distance measure bears

a clear correlation to the traditional measures. For Hausdorff the

correlation is high (≈ 0.8). For Fréchet and DTW, while the correla-

tion is lower, there is a clear distinction between close and distant

trajectories, showing the utility of locality sensitive hashes.

6.1.1 Effect of radius and number of disks. This correlation nat-

urally raises a question of how it is influenced by parameters such

as the number and radii of disks. Figure 4 shows the effect of disk

radius; each subplot corresponds to results with a fixed number

of disks and a varying radius between 500m and 4km. The shaded

area corresponds to the 5 to 95 percentiles based on 30 trials. For

each trial we computed the Pearson correlation coefficient between

our distance measure and Hausdorff distance.

In Figure 4(a) a radius size of around 2.5km achieves the maxi-

mum correlation, beyond which the disks become less discrimina-

tory and the correlation decreases. We also observe that too small a

radius does not perform as well – to use a smaller radius we would

need to consider more disks.

The correlation also increases with the number of disks. A higher

number also assures low variability in performance between trials.

Even with a low number, such as 10, we get a good correlation of

≈ 0.7 or more as long as the radius is in the right range (1.5km-

3km). Beyond a certain number, increasing the number of disks does

not improve performance. For a good correlation we need to choose

enough disks to get a cover of the map, but having more disks offers

a more fine grained distance measure at the cost of greater storage

and computation, as we discuss in relation to nearest neighbours

queries in Section 6.2.

6.2 Nearest neighbour search

For a variable number of disks (10, 30, 50) and fixed r = 2km, we

computed the nearest neighbour for each trajectory in the dataset

using Hausdorff and Fréchet distances. To prune the search space

using our sketches we selected only those trajectories that had

sketch distance equal to 0, 1, 2 etc. We measured in what proportion

of cases the true nearest neighour is in the remaining set (accuracy),

and how large the eliminated set is compared to the total dataset

(pruning ratio). In Figure 5 we show how the pruning ratio changes

with accuracy.

There is little variation in the accuracy for a specific number of

disks. Interestingly, changing the number of disks does not influ-

ence the results too much for nearest neighbor search with LSH;

with a small number we can achieve a high pruning ratio and high
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Figure 3: Correlation of binary and ordered sketch distances with Hausdorff, Fréchet , and DTW for the Porto and Rome

datasets (the 5-95, 10-90, and 25-75 percentiles).
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Figure 4: (a) Correlation coefficient with Hausdorff distance

depending on the disk radius and the number of disks. Vari-

ance decreases when increasing the number of disks.

(b) CDF of the Hausdorff distance error between true and

found nearest neighbours. With more layers the error de-

creases.
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Figure 5: The performance for nearest neighbours queries

inscreases with the number of disks. A small number (30)

suffices.

accuracy. However, larger number of disks provides better resolu-

tion when using the sketches as an estimate of distance.

Figures 5 show that accuracy can be as high as about 80% at a

pruning ratio of over 80% for both Hausdorff and Fréchet distances,

even with a small number of disks. Thus, this method allows us to

restrict our attention to a small fraction of the trajectories and still

obtain the correct nearest neighbor in most cases.

Multiresolution trajectory sketches. In Figure 4 we show how the

distance error to the nearest neighbour changes with the different

number of layers in the multiresolution sketches. We considered 1,

5, 7, 10 and 15 layers. At the first level the disks have radius r = 2km;

this decreases by a factor ε = 0.1 at each level. The number of disks

at level i is given by A/r2i log(A/r
2

i ), where ri is radius at level i .
To find the nearest neighbours given a query trajectory we com-

pare the sketches at every layer, starting from the top, and only

advance to the next one if the sketches match. When we reach

the last layer, the set of the remaining trajectories is searched for

the nearest neighbour. The difference in distance between the true

nearest neighbour and the one we found gives the error. Figure 4

shows the CDF of the error.

At the first level the number of disks is low (13). Performance

increases quickly with the number of layers. In practice, the per-

formance can be further improved by checking for approximate

matches between sketches instead of exact matches (corresponding

to distance 0).

6.3 Robustness to data loss and privacy of

locations

Trajectory data can be subject to sensing errors and noise and often

has missing data. In other cases, a lower frequency of location

sampling is preferred to maintain the user’s privacy in between

check-ins [24]. The disk distance performs well even when large

parts of the trajectories are missing. Interestingly, when only 10%

of the datapoints in each trajectory are retained, the disk distance

is still highly correlated with the Hausdorff distance, as can be seen

in Figure 3 (d). In this experiment we computed the disk distance

on only a 10% sample of the location points in each trajectory, and

plotted against their true initial Hausdorff distance.

Beyond the natural robustness to unreliable sensing, this result

implies efficiency of storage and computations as only a small

random sample needs to be stored for useful comparison.

6.4 Time efficiency

We compared the running times of our method using pruning with

Hausdorff, Fréchet and DTW when computing distance matrices.
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Figure 6: Better performance in terms of running time.

In the first experiment shown in Figure 6 (a) we used the standard

Hausdorff implementation between point sets and computed the

time for sampled sets of up to 1000 trajectories. Using the Douglas-

Peucker algorithm to first simplify the trajectories did not bring

a large improvement in the computation time. The time taken to

compute all pairwise sketch distances is more than 5 times faster
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than computing Hausdorff distance for 1000 trajectories. This also

includes the preprocessing time of picking the disks and computing

the sketches.

For the second experiment in Figure 6 (b) we computed Fréchet

and DTW distances efficiently with Python libraries. The results

show that the sketch distance computation is 2 times faster than

Fréchet for 1000 trajectories when using 50 disks - enough to get a

90% accuracy for nearest neighbours search with 80% pruning ratio,

as can be seen in Figure 5.

6.5 Comparison with existing LSH method

We compared the performance of the ordered sketches with the

grid-based sketches proposed by Driemel and Silvestri [14]. In their

work the hashes are constructed in the following way:

• consider a grid that covers all trajectories;

• each vertex in the trajectory is replaced by the closest node

in the grid;

• from the resulting sequence of nodes the consecutive dupli-

cates are removed.

In experiments we considered various sizes of grids, ranging

from 100m to 15km. For every size s we built a grid that covers

the map, where the distance between any two nodes is equal to

s . We denote the number of resulting nodes by ngrid . To compare

with our proposed method, we deployed ngrid/2 disks of diameter

s . Notice that we are using the ordered sketches (not the fixed size

binary sketches) because the grid approach gives a LHSs scheme for

Fréchet . Two ordered sketches are considered the same if the edit

distance is at most 2. Figure 7 shows the results: the two methods

perform approximately the same in terms of pruning ratio and

accuracy (slightly better for the disks version), but the sizes of our

sketches are almost half the size of the grid sketches.

(a) (b)

Figure 7: Better performance in terms of (a) accuracy and (b)

storage size.

7 CONCLUSION

We presented a randomized sketching scheme to compactly repre-

sent trajectories, and established its effectiveness in both theory

and practice of trajectory processing. Planar networks and trajec-

tories are common in robotics, biological systems and many other

domains. Adaptation of this basic randomized scheme in these areas

remain to be investigated, as well as in trajectories embedded in

higher dimensions.
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